368 lines
14 KiB
Markdown
368 lines
14 KiB
Markdown
<h1><center>实验报告</center></h1>
|
||
|
||
<div style="text-align: center;">
|
||
<div><span style="display: inline-block; width: 65px; text-align: center;">课程名称</span><span style="display: inline-block; width: 25px;">:</span><span style="display: inline-block; width: 280px; font-weight: bold; text-align: left;">数字图像处理</span></div>
|
||
<div><span style="display: inline-block; width: 65px; text-align: center;">实验题目</span><span style="display: inline-block; width: 25px;">:</span><span style="display: inline-block; width: 280px; font-weight: bold; text-align: left;">自选课题-CLIP图片分类任务复现</span></div>
|
||
<div><span style="display: inline-block; width: 65px; text-align: center;">姓名学号</span><span style="display: inline-block; width: 25px;">:</span><span style="display: inline-block; width: 280px; font-weight: bold; text-align: left;">柯劲帆21281280; 李桦炅21281282</span></div>
|
||
<div><span style="display: inline-block; width: 65px; text-align: center;">班级</span><span style="display: inline-block; width: 25px;">:</span><span style="display: inline-block; width: 280px; font-weight: bold; text-align: left;">物联网2101班</span></div>
|
||
<div><span style="display: inline-block; width: 65px; text-align: center;">指导老师</span><span style="display: inline-block; width: 25px;">:</span><span style="display: inline-block; width: 280px; font-weight: bold; text-align: left;">安高云</span></div>
|
||
<div><span style="display: inline-block; width: 65px; text-align: center;">报告日期</span><span style="display: inline-block; width: 25px;">:</span><span style="display: inline-block; width: 280px; font-weight: bold; text-align: left;">2024年1月10日</span></div>
|
||
</div>
|
||
|
||
|
||
|
||
---
|
||
|
||
|
||
|
||
**目录**
|
||
|
||
[TOC]
|
||
|
||
---
|
||
|
||
|
||
|
||
# 0. 报告摘要
|
||
|
||
本实验的主要工作是复现CLIP图片分类模型,使用CLIP在两个细粒度分类数据集上进行了finetune和测试,采用预训练Vision Transformer作为图片特征提取器,均实现了较高正确率的图片分类,验证了CLIP的图片分类功能在细粒度分类数据上的有效性。
|
||
|
||
|
||
|
||
| 小组成员名字 | 小组成员学号 | 工作贡献占比 |
|
||
| ------------ | ------------ | ------------ |
|
||
| 柯劲帆 | 21281280 | 70% |
|
||
| 李桦炅 | 21281282 | 30% |
|
||
|
||
|
||
|
||
# 1. 论文解读
|
||
|
||
CLIP是OpenAI在2021年提出的一种深度学习图片分类方法。
|
||
|
||
CLIP基本算法原理相对比较简单:
|
||
|
||
1. 为了对图片和文本建立联系,首先分别对图片和文本进行特征提取。图片特征提取的backbone可以是Resnet系列模型也可以是VIT系列模型,文本特征提取一般采用Bert模型;
|
||
2. 特征提取之后,进行归一化,然后直接相乘来计算余弦距离,同一图片-文本对的结果趋近于1,不同图片-文本对的结果趋近于0,采用对比损失计算loss。这种计算loss方式效果与batch size有很大关系,一般需要比较大的batch size才能有效果。
|
||
|
||
模型图如下:
|
||
|
||

|
||
|
||
伪代码:
|
||
|
||
```python
|
||
# image_encoder - ResNet or Vision Transformer
|
||
# text_encoder - CBOW or Text Transformer
|
||
# I[n, h, w, c] - minibatch of aligned images
|
||
# T[n, l] - minibatch of aligned texts
|
||
# W_i[d_i, d_e] - learned proj of image to embed
|
||
# W_t[d_t, d_e] - learned proj of text to embed
|
||
# t - learned temperature parameter
|
||
|
||
# extract feature representations of each modality
|
||
I_f = image_encoder(I) #[n, d_i]
|
||
T_f = text_encoder(T) #[n, d_t]
|
||
|
||
# joint multimodal embedding [n, d_e]
|
||
I_e = l2_normalize(np.dot(I_f, W_i), axis=1)
|
||
T_e = l2_normalize(np.dot(T_f, W_t), axis=1)
|
||
|
||
# scaled pairwise cosine similarities [n, n]
|
||
logits = np.dot(I_e, T_e.T) * np.exp(t)
|
||
|
||
# symmetric loss function
|
||
labels = np.arange(n)
|
||
loss_i = cross_entropy_loss(logits, labels, axis=0)
|
||
loss_t = cross_entropy_loss(logits, labels, axis=1)
|
||
loss = (loss_i + loss_t)/2
|
||
```
|
||
|
||
|
||
|
||
# 2. 实验过程
|
||
|
||
本次实验我们复现了CLIP,在两个公开的数据集中对CLIP进行finetune,验证其正确率。
|
||
|
||
## 2.1. 实验环境
|
||
|
||
- NVIDIA A40服务器
|
||
|
||
## 2.2. 数据集下载
|
||
|
||
首先我们下载了用于finetune的两个数据集:
|
||
|
||
- [Caltech-UCSD Birds-200-2011 (CUB-200-2011)](https://paperswithcode.com/dataset/cub-200-2011)
|
||
- [Stanford Cars](https://paperswithcode.com/dataset/stanford-cars)
|
||
|
||
都是细粒度的图片分类数据集。
|
||
|
||
## 2.3. finetune代码
|
||
|
||
### 2.3.1. 数据集
|
||
|
||
在本任务中,数据为图片-文本对,因此需要对分类的下标和名字做一个映射,我们使用一个类实现:
|
||
|
||
```python
|
||
# get_loader.py
|
||
|
||
class Classes:
|
||
def __init__(self, classes_file):
|
||
self.class2index = {}
|
||
self.index2class = {}
|
||
classes = pd.read_csv(classes_file)
|
||
for index, row in classes.iterrows():
|
||
carname = row['class_names']
|
||
self.class2index['A photo of ' + carname] = index
|
||
self.index2class[index] = 'A photo of ' + carname
|
||
def __len__(self):
|
||
return len(self.class2index)
|
||
def get_class(self, num: int):
|
||
return self.index2class[num] if (num in self.index2class) else None
|
||
def get_id(self, class_name: str):
|
||
return (
|
||
self.class2index[class_name] if (class_name in self.class2index) else None
|
||
)
|
||
```
|
||
|
||
然后对本地的数据集进行读入。
|
||
|
||
两个数据集的存储形式不同:
|
||
|
||
- `CUB-200-2011`将训练集和测试集放在同一个文件夹中,以不同类别分文件夹存储,并使用一个表格文件存储图片名称的编号、一个表格存储图片编号的标签、一个表格文件存储图片编号对应的是训练/测试集;
|
||
- `Stanford Cars`将训练集和测试集分别放在不同的文件夹里,使用两个表格文件分别存储训练/测试集图片名称编号对应的标签。
|
||
|
||
因此,自定义`MyDataset`类需要针对不同数据集实现不同的读取逻辑。
|
||
|
||
读取`CUB-200-2011`的代码为:
|
||
|
||
```python
|
||
# get_loader.py
|
||
|
||
import clip
|
||
from PIL import Image
|
||
from torch.utils.data import Dataset
|
||
import os
|
||
|
||
|
||
class MyDataset(Dataset):
|
||
def __init__(self, processor, train=True):
|
||
classes = Classes('/home/kejingfan/cub/classes.txt')
|
||
class_list = [classes.get_class(i) for i in range(len(classes))]
|
||
self.tokens = clip.tokenize(class_list) # 对文本进行tokenize
|
||
|
||
self.img_process = processor
|
||
# 从表格中获取整个数据集的图片列表
|
||
self.root_dir = '/home/kejingfan/cub/images'
|
||
images_list = open('/home/kejingfan/cub/images.txt').readlines()
|
||
images_list = [line.strip().split(' ')[1] for line in images_list]
|
||
self.images = []
|
||
# 从表格中获取图片对应的标签
|
||
labels_file = open('/home/kejingfan/cub/image_class_labels.txt').readlines()
|
||
labels = [int(line.strip().split(' ')[1]) for line in labels_file]
|
||
# 从表格中获取图片对应的数据集
|
||
train_test_split_file = open('/home/kejingfan/cub/train_test_split.txt').readlines()
|
||
is_train = [line.strip().split(' ')[1] == '1' for line in train_test_split_file]
|
||
for index in range(len(images_list)): # 将对应数据集的图片放入列表中
|
||
class_id = labels[index]
|
||
if (train and is_train[index]) or (not train and not is_train[index]):
|
||
self.images.append([os.path.join(self.root_dir, images_list[index]), int(class_id) - 1])
|
||
|
||
def __len__(self):
|
||
return len(self.images)
|
||
|
||
def __getitem__(self, index):
|
||
image, target = self.images[index]
|
||
token = self.tokens[target]
|
||
image = Image.open(image).convert("RGB")
|
||
image = self.img_process(image) # 图片预处理
|
||
return image, token, target
|
||
```
|
||
|
||
读取`Stanford Cars`的代码仅在`__init__()`中与读取`CUB-200-2011`的代码有区别。`__init__()`如下:
|
||
|
||
```python
|
||
def __init__(self, processor, train=True):
|
||
classes = Classes('/home/kejingfan/cars/class_names.csv')
|
||
class_list = [classes.get_class(i) for i in range(len(classes))]
|
||
self.tokens = clip.tokenize(class_list) # 对文本进行tokenize
|
||
|
||
self.img_process = processor
|
||
# 选择相应数据集的文件夹
|
||
self.root_dir = '/home/kejingfan/cars' + ('/cars_' + ('train' if train else 'test')) * 2
|
||
# 选择相应数据集的标签
|
||
train_annos_file = '/home/kejingfan/cars/cars_train_annos.csv'
|
||
test_annos_file = '/home/kejingfan/cars/cars_test_annos_withlabels.csv'
|
||
images_list = pd.read_csv(train_annos_file if train else test_annos_file)
|
||
self.images = []
|
||
for index, row in images_list.iterrows(): # 将对应数据集的图片放入列表中
|
||
class_id = int(row['class'])
|
||
self.images.append([os.path.join(self.root_dir, row['fname']), class_id - 1])
|
||
```
|
||
|
||
### 2.3.2. 测试
|
||
|
||
用于判断训练的效果和进度。
|
||
|
||
```python
|
||
# test.py
|
||
|
||
import torch
|
||
import torch.nn
|
||
import clip
|
||
from PIL import Image
|
||
import argparse
|
||
import numpy as np
|
||
from tqdm import tqdm
|
||
from get_loader import Classes
|
||
|
||
def test(net, test_dataset, test_loader, device):
|
||
net.eval()
|
||
total_accuracy = 0.0
|
||
texts = test_dataset.tokens.to(device)
|
||
with torch.no_grad():
|
||
for index, (images, tokens, targets) in tqdm(enumerate(test_loader), total=len(test_loader)):
|
||
images = images.to(device)
|
||
logits_per_image, logits_per_text = net(images, texts)
|
||
probs = logits_per_image.softmax(dim=-1).cpu().numpy()
|
||
accuracy = np.sum(probs.argmax(1) == targets.numpy())
|
||
total_accuracy += accuracy
|
||
net.train()
|
||
return total_accuracy / len(test_dataset)
|
||
```
|
||
|
||
### 2.3.3. 训练
|
||
|
||
超参数设置为:
|
||
|
||
- batch_size = $64$
|
||
- learning_rate = $10^{-6}$
|
||
- Adam优化器
|
||
|
||
代码如下:
|
||
|
||
```python
|
||
# train.py
|
||
|
||
import torch
|
||
from torch import nn, optim
|
||
from torch.utils.data import DataLoader
|
||
from tqdm import tqdm
|
||
import clip
|
||
|
||
from get_loader import MyDataset
|
||
from test import test
|
||
|
||
|
||
def convert_models_to_fp32(model):
|
||
for p in model.parameters():
|
||
p.data = p.data.float()
|
||
p.grad.data = p.grad.data.float()
|
||
|
||
|
||
def train():
|
||
batch_size = 64
|
||
learning_rate = 1e-6
|
||
num_epochs = 500
|
||
|
||
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
|
||
net, preprocess = clip.load("ViT-L/14", device=device, jit=False)
|
||
|
||
if device == 'cpu':
|
||
net.float()
|
||
else:
|
||
clip.model.convert_weights(net)
|
||
|
||
loss_img = nn.CrossEntropyLoss()
|
||
loss_txt = nn.CrossEntropyLoss()
|
||
|
||
optimizer = optim.Adam(net.parameters(), lr=learning_rate, betas=(0.9, 0.98), eps=1e-6, weight_decay=0.2)
|
||
|
||
train_dateset = MyDataset(processor=preprocess, train=True)
|
||
train_loader = DataLoader(train_dateset, batch_size=batch_size, shuffle=True, num_workers=64, pin_memory=True)
|
||
test_dataset = MyDataset(processor=preprocess, train=False)
|
||
test_loader = DataLoader(test_dataset, batch_size=batch_size, num_workers=64, shuffle=True, pin_memory=True)
|
||
|
||
print(f'Train dataset size: {len(train_dateset)}\nTest dataset size: {len(test_dataset)}\n')
|
||
|
||
for epoch in range(num_epochs):
|
||
total_epoch_loss = 0
|
||
for index, (images, tokens, targets) in tqdm(enumerate(train_loader), total=len(train_loader)):
|
||
optimizer.zero_grad()
|
||
images = images.to(device)
|
||
tokens = tokens.to(device)
|
||
with torch.set_grad_enabled(True):
|
||
logits_per_image, logits_per_text = net(images, tokens)
|
||
ground_truth = torch.arange(len(images), dtype=torch.long, device=device)
|
||
cur_loss = (loss_img(logits_per_image, ground_truth) + loss_txt(logits_per_text, ground_truth)) / 2
|
||
total_epoch_loss += cur_loss.item()
|
||
cur_loss.backward()
|
||
|
||
if device == 'cpu':
|
||
optimizer.step()
|
||
else:
|
||
convert_models_to_fp32(net)
|
||
optimizer.step()
|
||
clip.model.convert_weights(net)
|
||
|
||
test_acc = test(net, test_dataset, test_loader, device)
|
||
print(f'Total train loss: {total_epoch_loss:.6f}, Test accuracy: {test_acc:.6%}')
|
||
print("----------------------------------------------------------")
|
||
torch.save({'epoch': epoch,
|
||
'model_state_dict': net.state_dict(),
|
||
'optimizer_state_dict': optimizer.state_dict(),
|
||
'loss': total_epoch_loss,
|
||
}, f"model_checkpoint/model-{epoch + 1}_acc-{test_acc*100:.3f}.pt")
|
||
|
||
|
||
if __name__ == "__main__":
|
||
train()
|
||
```
|
||
|
||
## 2.4. 运行过程及结果
|
||
|
||
```sh
|
||
$ conda install --yes -c pytorch pytorch=1.7.1 torchvision cudatoolkit=11.0
|
||
$ pip install ftfy regex tqdm
|
||
$ pip install git+https://github.com/openai/CLIP.git
|
||
```
|
||
|
||
依次运行上述命令,环境配置完成。
|
||
|
||
运行代码。
|
||
|
||
```sh
|
||
$ python train.py
|
||
```
|
||
|
||
在两个数据集上得到以下结果:
|
||
|
||
<table>
|
||
<tr>
|
||
<td><img src='cub_acc.png', alt='cub_acc'></td>
|
||
<td><img src='car_acc.png', alt='car_acc'></td>
|
||
</tr>
|
||
</table>
|
||
|
||
| 数据集 | finetune的epoch数 | 第一个epoch的正确率 | 最高正确率 |
|
||
| ------------- | ----------------- | ------------------- | ---------- |
|
||
| CUB-200-2011 | $61$ | $66.690\%$ | $84.398\%$ |
|
||
| Stanford Cars | $30$ | $78.995\%$ | $88.820\%$ |
|
||
|
||
可见CLIP在分类任务中达到了非常好的效果。
|
||
|
||
|
||
|
||
# 3. 心得体会
|
||
|
||
在本实验中,我们复现了CLIP图片分类模型,并在`CUB-200-2011`和`Stanford Cars`两个数据集上进行了训练和测试。
|
||
|
||
通过本次实验,我们体会到:
|
||
|
||
1. CLIP是一个非常强大的视觉语言模型,能够在零样本下进行分类。它结合了图像模型提取的视觉特征和文本模型提取的语义特征,通过单模态和跨模态对比损失进行联合训练。
|
||
2. 通过finetune,CLIP可以很好地适应特定的图像分类任务,并取得非常高的分类准确率。这验证了CLIP作为预训练模型的强大迁移能力。
|
||
3. 实验中,我们体会到了如何准备图像分类数据集,如何设计训练和测试代码,如何配置模型超参数等实际开发中的经验。这些都对我们今后独立开发图像分类项目具有很好的指导意义。
|
||
4. 整个实验过程顺利,达到了复现CLIP在具体图像分类任务上的强大性能的目的。让我们对视觉语言预训练模型有了更直观的理解。
|
||
|
||
通过这个实验,我们对深度学习在计算机视觉领域的应用有了进一步的理解,掌握了实际的开发调试经验。
|