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离散傅里叶变换

第 三 章
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3.1 傅里叶变换的四种形式

3.2 周期序列的傅里叶变换

3.3 离散傅里叶变换

3.4 离散傅里叶变换的性质

3.5 频域抽样理论

3.6 DFT应用

主要内容
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3.1  傅里叶变换的四种形式

傅里叶变换的四种形式（时间频率取连续离散值）

1. 连续时间、连续频率－傅里叶变换

2. 连续时间、离散频率－傅里叶级数（变换）

3. 离散时间、连续频率－序列的傅里叶变换

4. 离散时间、离散频率－离散傅里叶变换

傅里叶变换是将一个信号从时域分析变换到
频域进行分析处理的一种变换。
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3.1.1    连续时间、连续频率
－－傅里叶变换（FT）

连续时间非周期信号 的傅里叶变换

之间的关系：

正变换

反变换
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时域连续时间函数对应于频域非周期频谱，

时域非周期性对应于频域连续的谱函数；
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连续时间周期信号 可以展开为傅里叶级数，

其傅里叶系数 与 之间的关系为：

3.1.2    连续时间、离散频率
－－傅里叶级数（FS）

傅里叶系数

傅里叶级数

基频 谐波分量
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时域连续时间函数对应于频域非周期频谱，

时域周期性对应于频域离散的谱函数；
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离散时间信号 的傅里叶变换 的关系为：

3.1.3    离散时间、连续频率
－－序列的傅里叶变换（DTFT）

数字频率：

模拟频率：

采样频率：
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时域的离散化对应于频域的周期延拓，

时域的非周期性对应于频域的连续谱函数；
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按照时间变量和频率变量是连续还是离散
的不同组合，

→必存在时间变量和频率变量都是离散的情
况，即离散傅里叶级数变换DFS。

→即：时域是离散的周期序列，对应的频域
也是离散和周期的。

→特例：时域和频域均取有限长N点，则为离
散傅里叶变换DFT

3.1.4 离散时间、离散频率
－－离散傅里叶变换（DFT）
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时域离散时间对应于频域周期的频谱，

时域周期性对应于频域离散的谱函数；
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时间域 频率域

连续和非周期 非周期和连续

连续和周期（T0） 非周期和离散

离散（T, 抽样周期）
和非周期

周期 和连续

离散(T)和周期(T0)

四种傅里叶变换的形式

变换类型

傅里叶变换
FT

傅里叶级数
FS

序列的傅里叶
变换 DTFT

离散傅里叶
级数变换
DFS

周期

和离散
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四种傅里叶变换

13
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3.2  周期序列的离散傅里叶级数
Discrete Fourier Sequences   （DFS）

可写作，

周期序列满足，

r 是任意整数

其中，“ ~ ” 表示周期性，读作tilde

如何对 作频谱分析

3.2.1   DFS的定义
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因为 是离散的，故频谱是周期的；

因为 是周期的，故频谱是离散的；

即： 的频谱应是离散的、周期的。

但： 是功率信号，不能直接求DTFT；

也即，周期序列不是绝对可和的，因此，

其 z 变换不存在。

➢但在一个周期内， 的 z 变换存在
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• 连续时间周期信号可以用傅里叶级数表示

基频序列周期 基频 k次谐波序列

连续周期

离散周期

T0

N

•周期序列信号同样可以用离散傅里叶级数表示。
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离散、周期

离散、周期

FS:

离散化
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周期：

离散、周期（ ）
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离散傅里叶级数的湝波成分只有N个独立成分。

r为任意整数

故， 可展开为N个分量的离散傅里叶级数

如何求解

而 也是周期函数

为k次湝波的系数，
也称作 的频谱
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将r换成k，即为

为周期函数，周期为N

该式就是计算一个周期内的谐波系数
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是周期的，周期是 ，间隔是

是周期的，周期是 ，间隔是

所以，求和各取一个周期，有：

此即DFS与IDFS计算公式
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采用记号：

傅里叶级数（正）变换（DFS）

傅里叶级数反变换（IDFS）
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的性质

1、共轭对称性

2、周期性

3、可约性

4、正交性
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其z变换为：

当 时，两者相等

周期序列 可以看成是 的一个周期 作

z变换，然后将z变换 在z平面的单位圆上作等

间隔 抽样得到。
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例题3.1：如图是N=5的周期序列 ，一个周期表示

为 ， 求

0 1 2 3 4 5 6 7 8 9

1
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的傅里叶级数为

幅度谱如图3-1所示 （P116）

解：
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的一个周期的有限长序列 的傅里叶变换

比较：将 代入，两式
相同。

如图3-1 （P116）所示。

周期序列 可以看成是 的一个周期 作

z变换，然后将z变换在z平面的单位圆上作等间隔

抽样得到。
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试讨论 的傅里叶级数的系数 与 的一

个周期 的傅里叶变换 的关系。

例题2：如图是N=10的周期序列 ，一个周期表示为

0 1 2 3 4 5 6 7 8 9

1
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的傅里叶级数为

幅度谱和相位谱如图3-2 (b)(c)所示 （P117）

解：
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的一个周期的有限长序列 的傅里叶变换

比较：将 代入，两式
相同。

如图3-2 （P117）所示。

周期序列 可以看成是 的一个周期 作

z变换，然后将z变换在z平面的单位圆上作等间隔

抽样得到。



33



34

3.2.2  离散傅里叶级数的性质

DFS的许多性质和 z变换的性质非常相
似，但由于 和 的周期性，
使得DFS在时域、频域之间具有严格
的对偶关系。

周期均为Ｎ
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一、线性

其中，a，b为任意常数，其DFS也是
周期为N的周期序列

证明：
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二、序列的移位

证明：

由于 及 都是以N为周期的函数



37

三、调制特性

证明：
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四、周期卷积和

如果

则

证明
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代入

同理
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注意： 是一个卷积公式

称作：周期卷积。

周期卷积与非周期序列的线性卷积不同点

1. 参与卷积运算的都是周期序列

2. 求和只在一个周期（m=0, 1, …, N-1）进行

周期卷积的求解方法与非周期序列的线性卷积
相同。
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同理：时域周期序列的乘积对应着频域周期序
列的周期卷积，即若
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例题： 是6点周期序列

求 的周期卷积。

0 1  2  3  4  5  

0  1  2  3  4  5 

解：
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0  1  2  3  4  5  

0  1  2  3  4  5  

0  1  2  3  4  5  

0  1  2  3  4  5  

1

3

4

0 1  2  3  4  5  
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线性卷积

1   1   1   1   0   0 

0   1   2   1   0   0

1   1   1   1   0   0

2   2   2   2   0   0

1   1   1   1   0   0

0   1   3   4   4    3   1   0   0   0   0
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3.3  离散傅立叶变换（DFT）

1. 离散傅里叶变换（Discrete Fourier 

Transform, DFT）就是有限长序列的

离散频域表示，即有限长序列的离散
傅里叶级数。

2. 如何计算有限长序列的傅里叶级数？

3. 将长度为N的有限长序列 看作
是周期为N的周期序列 的一个
周期，然后进行计算。
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⚫将长度为N的有限长序列 看作

是周期为N的周期序列 的一个

周期， 看作是 以N为周期

的周期延拓。

即
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⚫称 的第一个周期 [0, N-1] 为主
值区间；

⚫称 是 的主值序列；

即： 是主值区间的值。

⚫由于 没有重叠，故可以
通过对 进行取模运算获得
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例题： 是周期为N=9的序列，

求

解：
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回忆：矩形序列RN(n)       

故有：

同理有：
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故，有限长序列的傅里叶级数即为

有限长序列的傅里叶变换

正变换

反变换

称为：离散傅里叶变换对
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有限长 长度N， 隐含周期性

周期序列 周期为N

有限长 长度N， 隐含周期性

周期序列 周期为N

序列 序列
IDFT

DFT
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3.4  离散傅立叶变换的性质

DFT的性质，和DFS的性质基本一致。包括

1. 线性

2. 序列的圆周移位

3. 对称定理（对偶性）

4. 反转定理

5. 序列的总和
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6. 序列的初始值

7. 延长序列的离散傅里叶变换

8. 共轭对称

9. DFT形式下的帕塞瓦定理

10. 圆周卷积和

11. 有限长序列的线性卷积与圆周卷积
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设 ， ,          为有限长序列，有

， ,          为有限长序列，长
度可以相等，可以不相等。

注意：

在周期序列傅立叶级数变换中，长度相等。
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一、 线性
设两个有限长序列 和 ，则

问题：两个序列长度问题如何考虑？

证明：按照定义即可完成。

其中， 为任意常数（实数或复数）。
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讨论：

1. 如果 和 长度都为N，

则 也是N点序列。

则 应为

2. 若 和 长度不相等，设

为N1， 为N2 ，

故所有的DFT必须按照 N 点计算。而不

能按照 N1 或者 N2 进行计算。
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例如，若 ， 则取 ，

将 补上 个零，变为 的

序列，然后按照 点DFT进行计算。

问题：长度增加后 的频谱是否改变？
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一个有限长序列 的圆周移位指
用它的长度N为周期，进行周期延拓
得周期序列 ，将周期序列
进行移位，然后取主值区间 [0, N-1] 

上的序列值。

二、 序列的圆周（循环）移位

◆圆周移位的定义：

◆有限长序列如何移位？

◆序列移位：
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有限长序列 的圆周移位表示为：

式中， 表示 的周期延拓
序列 的m位移位（m>0 左移，
m<0 右移）

表示对此延拓后的周期序列取
主值序列。

例题 求
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0    1     2     3 

0    1     2     3 

0    1     2     3 

0    1     2     3 
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有限长序列 ，

则

圆周移位性质：

若
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证明：

利用：

则

采用周期序列的移位性质来证明
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原因

对照：序列的傅立叶变换的移位性质

指数是正的
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结论

对频谱的幅度没有影响。

1. 有限长序列的圆周移位，在离散频域中，
只引入一个和频率成正比的线性相移：

2. X(k)的圆周移位性质（调制特性）

若

则
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利用该性质，可以推导出以下两个式子

即：时域序列的调制等效于频域的圆

周移位。

应用：通信中的幅度调制！

有用信息 载波



67

三、对偶性（对称定理）

若 的离散傅里叶变换为 ，则当时间
序列具有频谱序列的形状 时，其对应的
离散傅里叶变换为：

证明：

即

n, k互换
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四、反转（褶）定理

证明：

若 的离散傅里叶变换为 ，则
的离散傅里叶变换对为

变量置换
即
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五、序列的总和

时间序列 中各取样值的总和等于其离散
傅里叶变换为 在 时的值。

序列的均值（直流分量）
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六、序列的初始值

若 的离散傅里叶变换为 ，则
的初始值 为频谱序列各取样值 的
总和除以N。
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七、延长序列的离散傅里叶变换

序列延长的两种方法：

1. 填充零
填充零延长到所需长度

2. 拷贝原序列
拷贝原序列的值至所需长度

实际中常采用第一种方法。
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1  填充零至整数倍长度

把序列 ，填充零至长度 ，
得到新序列 ，

则 的离散傅里叶变换
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证明：

故： 的离散傅里叶变换（即频谱）
与 的频谱 是相对应的，即谱线包
络是一样的，只不过 的频谱间隔比
的频谱间隔要小 倍，频谱更加细致。
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2  填充零至任意长度

把序列 ，填充零至长
度 ，得到新序列 ，

则 的离散傅里叶变换
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证明：

故： 的离散傅里叶变换（即频谱）
与 的频谱 也是相对应的，即谱线
包络是一样的，只不过 的频谱间隔比

的频谱间隔要小 倍。
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3  重复原序列填充至整数倍长度

把序列 ，重复原序列填充至
长度 ，得到新序列 ，

则 的离散傅里叶变换
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证明：

第一项：



78

第二项
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第r项
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故：
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而：

故：
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故： 的离散傅里叶变换（即频谱） 当

k 可以被 r 整除时， 和 是对应的，即

包络线是一致的，但幅度要增加 r 倍；

其它情况， 的值都为零。
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4 重复原序列填充至任意长度

比较复杂，就不讨论了。

综上所述，实际上，都是采用补零操作！
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八、 共轭对称性

回忆：

第二章讨论了序列的傅里叶变换，其中
定义了：

共轭对称序列 和共轭反对称序列

复数 实数
偶对称

奇对称
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性质：任何一个序列都可以表示成共轭
对称分量和共轭反对称分量之和。
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但：对于有限长序列，不能按照此定义
计算共轭对称序列和共轭反对称序列。

为什么？

设有限长序列 的长度为Ｎ

则，
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可以看出， 的长度为2N-1，不是N！

按照共轭对称序列的定义

同样， 的长度为2N-1，不是N！
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解决方法：

按照有限长序列的周期序列进行计算共
轭对称序列和共轭反对称序列，然后
取主值序列。此时，长度就是Ｎ。

分别称作圆周共轭对称分量
和圆周共轭反对称分量 。
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周期序列 的共轭对称分量
和共轭反对称分量 定义为：

满足
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有限长序列 的圆周共轭对称分量
和圆周共轭反对称分量 定义为：

满足

证明：
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⚫ 有限长序列的奇对称和偶对称

若序列是奇对称的， 即

若序列是偶对称的，即



92

例题：

该序列长度 N = 5, 是奇序列。

0    1     2

3     4    5 
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例题：

该序列长度 N = 4, 是奇序列。

0    1     2

3     4
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例题：

该序列长度 N = 5, 是偶序列。

0    1     2     3     4     5
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例题：

该序列长度 N = 4, 是偶序列。

0    1     2    3    4
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判断有限长序列对称性的方法

• 对于一个N点时实序列

• 判断x(n)的对称性简单方法是

–将n=N处序列值补上n=0处的序列值

–如果新序列对于n=N/2是偶（奇）对称的

–则原序列就是偶（奇）对称的

–否则，就不是偶（奇）对称的
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1    奇对称序列的DFT

若序列是奇对称的，

则其离散傅里叶变换也是奇对称的。

即
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说明：有些书籍定义为：

若序列是奇对称的， 即

存在问题： -n取值不在主值区间

另外，奇对称序列，有
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证明：

应用了
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即，将n=N处补上n=0处相同的序列

值的相反数，如果此新的序列对于
n=N/2而言，是奇对称的话，则原

序列是奇对称的，其离散傅里叶变
换也是奇对称的。

注意：N可以为偶数，也可以为奇数。

在实际情况下，一般取偶数，且为
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2    偶对称序列的DFT

若序列是偶对称的，即

则其离散傅里叶变换也是偶对称的。
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证明：

应用了



103

即，将n=N处补上n=0处相同的序列值，

如果此新的序列对于n=N/2而言，是偶

对称的话，则原序列是偶对称的，其

离散傅里叶变换也是偶对称的。

注意：N可以为偶数，也可以为奇数。
在实际情况下，一般取偶数，且为：
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3  对称性质1：共轭复数的DFT

式中， 表示 的共轭复序列

证明：
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应用了
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在一些资料中，有如下的写法：

严格来说，此式在 k=0处是不成立的。

但一般我们认为，X(k)是具有蕴含的周

期性，即X(N)=X(0), 故有如此的写法。
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4   对称性质2：

证明：

做变量置换 m=-n，然后再换回n
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5  对称性质3：序列实部的DFT

即，复序列的实部的DFT等于序列的DFT

的圆周共轭对称分量。

证明：
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6   对称性质4：序列虚部的DFT

即，复序列的虚部乘以j的DFT等于序列的
DFT的圆周共轭反对称分量。

证明：
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7  对称性质5：圆周共轭对称序列DFT

圆周共轭对称序列满足

含义： 的模偶对称，幅角奇对称。

或者，幅度谱偶对称，相位谱奇对称

或者，实部偶对称，虚部奇对称。
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意义： 参见图3-5, P128

将 看成为N等分的圆上，在

的左半圆上和右半圆上，序列是共轭
对称的，即模偶对称，幅角奇对称。
或者，实部是偶对称的，虚部是奇对
称的。
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8 对称性质6：圆周共轭反对称序列DFT

圆周共轭反对称序列满足

含义： 的实部奇对称，虚部偶对称



113

9 对称性质7：实序列的DFT

若 是实序列，则 只有圆周共
轭对称分量，即满足

因此，计算 的DFT时，只要计算
频谱 的一半就够了，另一半可
以通过其对称性来求。
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原序列为实序列，其频域为圆周共轭对称序列
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10 对称性质8：纯虚序列的DFT

若 是纯虚序列，则 只有圆周
共轭反对称分量，满足

同样，计算 的DFT时，也只要计
算频谱 的一半就够了，另一半
可以通过其对称性来求。
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11 对称性质9：

的实部和虚部与 的圆周共

轭对称分量和圆周共轭反对称分量
的关系：
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离散傅里叶变换 的对称性质

DFT与IDFT
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序列的傅里叶变换 的对称性质

DTFT与IDTFT
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表3-2 序列及其DFT的实、虚、偶、奇关系

偶对称

奇对称

实数

虚数

实数偶对称

实数奇对称

虚数偶对称

虚数奇对称

偶对称

奇对称

实部偶对称，虚部奇对称

实部奇对称，虚部偶对称

实数偶对称

实数奇对称

虚数偶对称

虚数奇对称



120

例题：利用共轭对称性质，用一次DFT运
算来计算两个实序列的DFT。

设 和 都是N点的实数序列，

利用这两个实数序列构造严格复数序列
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故，利用对称性质3

注意：不存在等式



122

同理，利用对称性质4
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10、 DFT形式下的帕赛瓦定理

证明：
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若令 ，则

即

表明，序列在时域计算的能量与在频域计
算的能量是相等的。



11、 圆周卷积和

设 和 都是长度为N的有限长序
列（ ）

若

则

circular convolution

cyclic convolution
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证明思路：从周期卷积来推导！

将 ， 和 ， ，

和 进行周期延拓，得到 ，

和 ， ， ， 和

即有，

证明：
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按照DFS的周期卷积和公式，

由于 ，为主值区间，故
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运算为圆周卷积和！它和周期卷积过程是一
样的，只不过取结果的主值序列。

同样可以证明

或 中的m取值为

，为圆周移位，故卷积为圆周卷积。

有些书籍称循环卷积。
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参见P136，图3-7

例题：两个有限长序列的7点圆周卷积

用符号 表示，圆圈内的N表示N点圆周
卷积和。

有些书籍中，用 表示圆周卷积和。

圆周卷积（7点）.doc
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圆周卷积的矩阵计算法

以m为哑变量， 表示圆周翻褶序

列 圆周移位序列，移位数为 n。

当 n=0时，以m为变量（m=0,1,…,N-1）的

序列为
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故可以得出 的矩阵表示

圆周移位的矩阵计算公式为
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如果 和 的长度不是N，则补零

计算： )(1 nx )(2 nx⑦( )y n =

例如： 1( ) { 1,1,1}x n =

2 ( ) { 1,1,1, 0, 0, 0,1}x n =
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计算： )(1 nx)(2 nx ⑦( )y n =

例如： 1( ) { 1,1,1}x n =

2 ( ) { 1,1,1, 0, 0, 0,1}x n =

将 圆周移位
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频域卷积和

若

则



135

12、有限长序列的线性卷积

与圆周卷积和

• 时域圆周卷积在频域上是序列的DFT相乘

• 实际问题都是线性卷积

• 如何利用DFT计算线性卷积？

• 能否用圆周卷积来代替线性卷积？
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（1） 线性卷积

设 是 点的有限长序列 ，

是 点的有限长序列 ，

的非零区间为

的非零区间为

的非零区间为
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故 是 点的有限长序列，长度
等于 两个序列长度之和减一。

在 外，

例题： 是 的矩形序列，图3-11(a)

是 的序列，图3-11(b)



则其线性卷积为 的序列,   图3-11(c)

1     1     1

1      2     3     4     5

5     5     5

4     4     4

3     3     3 

2     2     2

1     1     1

1     3     6     9     12    9    5
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（2）圆周卷积

将 和 都延长为L点的序列，即补零。

考虑 和 的L点的圆周卷积。



140

故L点圆周卷积为：

将 写成L点的周期延拓序列，

代入上式，有，
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故L点圆周卷积 是线性卷积 以L

为周期的周期延拓序列的主值序列。
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前面已经求出， 有 个非零值，

所以，延拓的周期L必须满足

各周期延拓才不会重叠，此时， 的前

个值正好是 的全部非零值。
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故L点圆周卷积 与 线性卷积 相等
的充要条件为：

此时，

结论：若， ，L点圆周卷积能代表
线性卷积。
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方法（1）：利用圆周卷积公式求解

方法（2）：利用圆周卷积是线性卷积的周
期延拓求。

例如：如何求5点圆周卷积 ？⑤

圆周卷积（5点）.doc


方法（2）：利用圆周卷积是线性卷积的周
期延拓求。

⑤
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图3-11， (d), (e), (f), (g)反映了圆周卷积和线
性卷积的关系。

(d),  (e),  中，L=5和L=6，均小于

此时，产生重叠现象，圆周卷积不等于线性
卷积。

(f), 中，L=7等于 ，此时，圆周卷
积等于线性卷积。

(g), 中，L=8大于 ，此时，圆周
卷积的前7点等于线性卷积，第8点是零值，
没有意义。
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13、线性相关与圆周相关

定义：两个确定信号或者随机信号之间
的相互关系，称作（线性）相关，
又称相关系数（函数）。

线性卷积

1、线性相关



148

为与书本一致，写作

当x(n)，y(n)均为实数时，

线性卷积

线性相关
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• 卷积运算包括：反褶、移位、相乘、相加

• 相关运算只包括：移位、相乘、相加，没
有反褶

• 相关函数不满足交换律

一般：

因为：x(n)与y(n-m)的相似程度和y(n)与
x(n-m)的相似程度是不一样的。
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相关函数还可以写作

信号x(n)与自身相关，称作自相关函数

例题：求实序列的自相关函数

或称为

线性相关.doc
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实序列自相关函数性质 － 偶对称性

证明：



152

为实序列，则



153

相关函数的z变换为
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代入 ，得到频谱

只有 均不为零 ， 才不为零

故：相关函数只包含两个信号所共有的频率分量。

若，x(n)=y(n)，则

自相关函数的频谱就是信号幅度谱的平方。
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2、圆周相关

有限长序列x(n)与y(n)的圆周相关定义为：



156

• 圆周相关定理

若有限长序列x(n)与y(n) 的DFT满足

则 的IDFT就是圆周相关函数
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证明： 将 和 进行周期延拓

则有



158

等式两边取主值序列，可得

当x(n)，y(n)为实数时，
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比 较

线性卷积

周期卷积

圆周卷积

线性相关

圆周相关



3.6  频谱抽样理论

• 模拟信号 在时域抽样时，得到的离散时间信

号 的（连续）频谱是原模拟信号频谱的周

期延拓函数，延拓周期是

T是抽样周期；

• 当抽样频率满足奈奎斯特抽样定理（ ）

时，从抽样信号 可以无失真地恢复原模拟

信号。

• 同样，频域抽样，时域会产生周期延拓。
160



• 频域抽样：

周期序列的离散傅里叶级数的系数 的值和原
序列 的一个周期 x(n) 的z变换在单位圆上的N

等分上的抽样值相等。

• 也就是说，如果我们知道了周期序列的一个周期的
z变换，那么，根据其抽样，就可以得到其序列的
离散傅里叶级数的系数 ，则原序列可以表示
为（傅里叶级数反变换）：
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• 问题：

（1）频域抽样点数为N，构造有限长序列

X(k)，信息有没有损失？也即，能否由

X(k)恢复原序列x(n)？

（2）是否任何一个序列都可以用频域抽样

的方法去逼近呢？
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• 考虑一般序列（绝对可和的非周期序列） ，

其z变换为

163

• 周期序列 ，周期为M，其主值序列为 ，

，

• 绝对可和，则其傅里叶变换存在且连续，

故其 z 变换 X(z) 的收敛域包括单位圆。也即可

以在单位圆上对 X(z) 进行频域抽样。

1

0

( ) ( )
M

n

n

X z x n z
−

−

−

=



• 对 在单位圆上进行N等分抽样，得到周期序列

• 原来问题转化为：

根据 能否无失真恢复原序列 ？

• 我们求 的离散傅里叶级数的反变换

• 周期序列 的一个周期（N点），就是

• 由该周期序列 ，可以求出其反变换 （N点）

• 根据 ，能否求出原序列 （M点） ？

164

2( ) ( ) ( ) ( )k k
jN N

nk

Nz W
z e n

X k X z X z x n W−



=
= =−

= = = 



• 将 的表达式代入 ， 有
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• 结论：

由 得到的周期序列 是原非周期序列

的周期延拓，其周期为频域抽样点数N。

• 故：频域抽样，会造成时域的周期延拓。

• 第一章学习过：

时域抽样造成频域的周期延拓

• 时域、频域是一一对应的。
166



1. 如果 不是有限长序列，则时域周期延拓后，

必然会造成混叠现象，产生误差。当序列随着n

的增加时，信号衰减很快，或者，频域抽样越密

（抽样点数N越大），则误差越小。

2. 如果 是有限长序列，点数为M，则当频域

抽样不够密，（N<M）， 以N为周期进行周

期延拓，就会造成混叠，产生误差。从 中

不能无失真地恢复原信号 。

讨论：
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3. 对于长度为M的有限长序列，频域抽样后能不失
真地恢复原序列的条件是 → 频域抽样的点数N

要大于或等于M，即

此时，有

168



4. 长度为N（或者小于N）的有限长序列，可以用
它的z 变换在单位圆上的 N 等分上的抽样值来精
确表示。

5. 频率抽样定理

如果序列的长度为M点，对其频谱 在

上进行等间隔N点抽样（抽样点不包
括 ）得到 ， 只有当抽样点数N满足

时，才能由 无失真恢复

否则，将产生时域的混叠失真，不能由
无失真恢复原序列 169



• 答案也是肯定的！

• 另一问题：

N个频域抽样 能否完全表达 及频率
响应 ？
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N个频域抽样 恢复 的插值公式！

1、由 X(k) 求 X(z)

将

代入

有



• 表示为

其中

称为插值函数！

下面分析插值函数零点和极点
172
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• 有N个零点

• 有一个非零极点

• 该极点和第k个零点相抵消！

• 故插值函数 只在其本身抽样点 处不
为零，等于1，在其它（N-1）个抽样点上都是
零。 在抽样点上X(z)＝X(k)。

• 在 有（N-1）阶极点



• z变换 在单位圆上的值即为频率响应

2、频率响应

而

令
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其中，

则有：

的幅度特性和相位特性如图3-14所示。

幅度特性

相位特性
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考虑

• 抽样点之间的 值由抽样点的加权插值得到。

故有

在第k个抽样点上，函数 ，其它抽样点
上 ， 。故在每一个抽样点上，频谱
精确地等于X(k)。
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file:///E:/bjtu/teaching/数字信号处理/2019-2020/课件/第一章.pptx#191. PowerPoint 演示文稿


3.7  DFT的应用
• DFT及FFT在信号滤波、功率谱分析、系统

分析、通讯理论方面有广泛的应用。归结起

来，有两个方面：1）计算线性卷积、线性

相关，2）用DFT(FFT)作为连续傅里叶变换

的近似.

• FFT并不是什么新的变换，只是DFT在计算

机上的一种快速算法，虽实际中广泛使用的

是FFT，但其应用的理论基础仍是DFT.
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• 通过考察计算线性卷积（相关)和连续傅里

叶逼近这两种DFT应用，就可以说我们建

立了一般FFT应用的基本理论基础。

1. 采用DFT办法求解线性卷积。

2. 采用DFT逼近连续时间信号的傅里叶变换

(级数)。
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一、采用DFT办法求解线性卷积

若做卷积的两序列都是有限长序列，能否

用它们的圆周卷积结果代替它们的线性卷积

结果呢？即圆周卷积与线性卷积的关系是什

么?

线性时不变系统

h(n)
y(n)=x(n)*h(n)x(n)
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设有限长序列：

我们把 补零点至 L 点,    

注意:  是 L 点序列,

是 N1+N2-1 点序列)
182
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L点圆周卷积 与 线性卷积 相等
的充要条件为：

L点圆周卷积 是 线性卷积 以L

为周期的周期延拓序列。



圆周卷积代替线卷积
的实现方法

• 设x(n)是激励, 是0≤n≤N1-1的有限长序列；h(n)

是线性时不变系统的单位抽样响应，是

0≤n≤N2-1的有限长序列;

• y(n)是激励通过系统后的响应

即：y(n)=x(n)* h(n). 

线性卷积
圆周卷积点数L（L ≥N1+N2-1）

圆周卷积
L点圆延拓，再取主值

设L为圆周卷积点数:
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• 上图依据的是圆周卷积定理，做的是圆周卷

积，由于L选取符合条件，因而圆周结果是

与线性卷积结果一致的。

L点DFT

h(n) L点DFT

L点IDFT

x(n)

y(n)

• 取L≥N1+N2-1情况下,圆周卷积代替线性卷

积的实际实现的框图如下
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二、用DFT逼近连续时间信号
的付里叶变换（级数）

• 我们知道DFT的最初引入就是为了使数字

计算机能够帮助分析连续时间信号的频谱。

• DFT的快速算法-----快速傅里叶变换(FFT)

的出现使得DFT这种分析方法具有实用价

值和重要性.
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讨论内容

1. 用DFT逼近连续非周期信号的傅里叶变换。

2. 用DFT逼近连续周期信号的傅里叶级数。

3. 用DFT逼近有限长信号的傅里叶变换。

4. 利用DFT计算模拟信号可能出现的几个问

题。
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4. 利用DFT计算模拟信号可能出现的几个问题

模拟信号 →离散时间信号

问题1：频率响应的混叠失真与参数的选择

问题2：频率泄漏

问题3：栅栏效应

问题4：频率分辨力
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问题1  频率响应的混叠失真与参数的选择

• 工程上一般取：

• 如果不满足抽样定理，会产生频率响应的

周期延拓分量的相互重叠现象，即频率响
应的混叠失真。 189

• 抽样定理：
若信号的最高频率为 ，要使抽样后不

失真地恢复原信号，抽样频率 应满足：



• 对于DFT，频率也是离散的函数，其间隔

为 ，称作：频率分辨力。该值越小越好！

• 时域抽样间隔为：

• 时域记录长度为：
( 采样时间长度 )

•频域抽样间隔为：
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• 信号的最高频率分量 与频率分辨力
相互矛盾（采样点数固定情况下）

• 若要想最高频率 增加，则抽样频率
也必须增加，因为抽样点数N满足

• 故，在N固定情况下，必然 要增加，
也即信号的频率分辨力要下降！
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• 如果要兼顾高频分量和频率分辨力，

唯一办法是增加抽样点数 N，也即增

加抽样的时间长度。

• 若要提高信号的频率分辨力（即减小 ）

当N固定时，抽样频率 要减小，要

保证不产生混叠失真，必然会减小高频

分量（也即信号的最高频率）

0F
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• 若不知道信号的最高频率 ，怎么办？

•若已知信号的频谱为无限宽，则，可取占信号
总能量的98%左右的频带宽度 为信号的最高
频率。

实际情况

193

• 根据“时域变化越快，高频分量越丰富”特点，

令：变化最快的两相邻的峰谷点之间的间隔为
半个周期 ，
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例题

频谱分析用DFT处理器，其抽样点数为

2的整数幂，假设没有采用任何特殊的数据

处理措施，已给条件为：

（1）频率分辨力

（2）信号最高频率

试确定以下参数：

（a）最小记录长度

（b）抽样点数间的最大时间间隔T

（c）在一个记录中最少点数N     195



解：

（a）由分辨力的要求确定最小记录长度

（b）由信号的最高频率确定最大抽样间隔
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（c）最小记录点数应满足：

或：

取：
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问题2   频率泄漏

⚫ 实际采集的信号是有限长信号，为原无限

长信号的一部分，相当于原无限长信号截

取得到的。其频谱与原来信号的频谱就有

差别。

⚫ 相当于在时域上乘一个矩形窗函数，则其

频谱为原来频谱与矩形窗频谱的卷积，产

生失真。这种失真最主要是造成频谱的

“扩散”，即频谱的泄漏
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频率泄漏原因

（1）当窗函数的频谱是抽样函数时，采集

信号的频谱就是原信号频谱。但此时

窗函数在时域上是无限长，等于没有

进行窗函数处理；

（2）当窗函数的频谱不是抽样函数时，卷积

就会造成频谱的展宽。
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频率泄漏解决方法

（1）增加信号长度，也即增加窗函数长度。

（2）不采用矩形窗函数，而采用其它更好的

窗函数（如，汉明窗等）。

• 在第七章FIR滤波器窗函数设计法

中讨论。
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问题3  栅栏效应

解决方法：增加频域抽样点数 N，也即增

加时域信号的长度（或补零），使谱线更

密，原来看不到的谱分量就能看到了。

⚫ DFT计算结果为离散值，即频谱只在

基频 的整数倍上才有值，而实际信

号的频谱是一个连续函数，就像通过一

个“栅栏”来观看景象一样，不能看到

全部的频谱值。

——此现象称为栅栏现象。
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问题4   频谱分辨力

• 频率分辨力与信号实际长度成反比！

202

• 信号长度 越长（N越大），则频谱
分辨力更好！（当抽样频率 确定时）



• 长度 是指真正实际的信号长度，而不
是补零后的长度。

• 我们知道，补零可以使频谱间隔更密，是
否就提高了频谱分辨力呢？

• 答案：No!

原因：补零并不能增加数据的有效长度！

• 补零作用：

(1) 克服栅栏效应；
(2)  使N为2的整数幂，便于FFT计算
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