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3.4  沃尔什函数的性质
沃尔什函数有如下一些主要性质：

１）在区间[0,1]内有下式成立

1),0(
1

0
=ò dttwal (3—119)
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这说明在[0,1]区间内除了wal (0,t)外，其他沃尔什

函数取＋１和－１的时间是相等的。

２）在区间[0,1]的第一小段时间内（通常称为

时隙）沃尔什函数总是取＋１。
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３）沃尔什函数有如下乘法定理

wal i t wal j t wal i j t( , ) ( , ) ( , )× = Å (3—122) 

并且，该定理服从结合律
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以上便是乘法定理的证明。



４）沃尔什函数有归一化正交性
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证明：由乘法定理有
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由于沃尔什函数有如下性质
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而当 ，即 时，则l ¹ 0 i j¹

0),(),(
1

0
=×ò dttjwaltiwal

正交性得证。



3.5  沃尔什变换

离散沃尔什变换可由以下二式表达
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离散沃尔什变换解析式写成矩阵式可得到沃尔什

变换矩阵式
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式中 )(NWal 代表 N 阶沃尔什矩阵。



另外，沃尔什函数可写成如下形式
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因此，可得到指数形式的沃尔什变换式
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(3—133)

以上是离散沃尔什变换的三种定义，其中矩阵式最

为简洁。
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3.6 离散沃尔什哈达玛变换

由沃尔什函数的定义可知，按哈达玛排列的沃尔什

函数与按沃尔什排列的沃尔什函数相比较只是排列

顺序不同，其本质并没有什么不同。



但是哈达玛矩阵具有简单的递推关系，也就是高阶

矩阵可用低阶矩阵的直积得到，这就使得沃尔什一

哈达玛变换有许多方便之处。因此，用得较多的是

沃尔什－哈达玛变换。



离散沃尔什－哈达玛变换的矩阵式如下：

(3-134)[ ]
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式(3—134)的逆变换式如下
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例：将时间序列 }1,1,0,0,1,1,0,0[

做沃尔什－哈达玛变换及反变换。
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3.7 离散沃尔什变换的性质

离散沃尔什变换有许多性质，下面把主要性质列举

如下。

为方便起见，用 {f (t)} 表示时间序列，用 {W( n)} 表

示变换系数序列，以 表示沃尔什变

换对应关系。
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２）模2移位性质

将时间序列{f(t)}作L位模2移位所得到的序列，我们

称为模2移位序列。模2移位是这样实现的：

设：

是周期长度为N的序列。
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新序列：

{ ( )} { ( ), ( ), ( ) ( )}z m z z z z Nl = -0 1 2 1!! (3—137) 

其中 。此时，称 是序列 f(t) 

的L位模2移位序列。
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由于 B0) 1 (0=0) 1 (00) 0 0(20 Å=Å =(2)D
B1) 1 (0=0) 1 (01) 0 0(21 Å=Å =(3)D
B0) 0 (0=0) 1 (00) 1 0(22 Å=Å =(0)D
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B0) 1 (1=0) 1 (00) 0 1(24 Å=Å =(6)D
B1) 1 (1=0) 1 (01) 0 1(25 Å=Å =(7)D

B0) 0 (1=0) 1 (00) 1 1(26 Å=Å =(4)D
B1) 0 (1=0) 1 (01) 1 1(27 Å=Å =(5)D

所以 { ( )} { ( ), ( ), ( ) ( ), ( ), ( ), ( ), ( )}z m f f f f f f f f2 2 3 0 1 6 7 4 5=

同理 { ( )} { ( ), ( ), ( ) ( ), ( ), ( ), ( ), ( )}z m f f f f f f f f3 3 2 1 0 7 6 5 4=



用矩阵表示为 [ ] [ ][ ]z M f1 1=

式中 [ ] { ( )}' { ( )}'f f t z m= =    [z]1 1

[ ]M1

0

=

é

ë

ê
ê
ê
ê
ê
ê
ê
ê
ê
ê
ê

ù

û

ú
ú
ú
ú
ú
ú
ú
ú
ú
ú
ú

 1 0 0 0 0 0 0
1 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 0 0 1 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 1
0 0 0 0 0 0 1 0

(3—139) 

(3—140) 



][][][ IMM T = 

[ ] [ ][ ]z M f2 2=

按照模2和的性质，可知

(3—141) 

ú
ú
ú
ú
ú
ú
ú
ú
ú
ú
ú

û

ù

ê
ê
ê
ê
ê
ê
ê
ê
ê
ê
ê

ë

é

=

0 0 1 0 0 0 0 0
0 0 0 1 0 0 0 0
1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0
0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 1
0 0 0 0 1 0 0 0
0 0 0 0 0 1 0 0

][ 2M



模2移位性质是指下面的关系:

如果 ，并且 是 的模2移

位序列，则 中：
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正整数， 。
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此定理可证明如下：

令 为 的元素， 是 的

模2移位序列，则
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令 ，则有 ，并且当 t 取值由0到N-1

时，r也取同样的值，只不过取值的顺序不同而已。

于是可写成如下形式：

r t l= Å t r l= Å
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又 ，这说明

[Wz(n)]2与l无关，即模2移位后的序列，作沃尔什变

换后，所得到的第n个系数的平方[Wz(n)]2与模2移位

的移位位数无关。
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所以，证明



因此，模2移位定理（或称为并元移位定理）又可表

达为输入序列 模2移位后的功率谱是不变的。)}({ tf



例如：设输入序列 ，对此序列

作l=3的模2移位，得
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根据

)(),()( nWlnwalnWz ×=

可得

þ
ý
ü

î
í
ì=

×=
×=

0 0, 0, 0, ,0,
2
1 0, ,

2
1            

)}()3 ,({            
)}() ,({)}({
nWnwal
nWlnwalnWz



从上面结果可知
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可见n相同时，功率也相同，也就是说功率谱不变。
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３）模2移位时间卷积定理

在讨论下面的定理之前，首先说明一下模2移位卷积与

模2移位相关的概念。

令 和 是两个长度相同的周期性序列。1{ ( )}f t 2{ ( )}f t
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用下面公式定义两个序列的模2移位卷积：

式中 为模2移位卷积， 为模2减运算符，

它的运算结果与模2加一样。
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模2移位相关的定义式如式(3—144)所示
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由式(3—143)和(3—144)可见，模2移位卷积和模2移

位相关具有相同的结果，即：
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如果用W代表作沃尔什变换，则证明如下：

{ ( )} { ( ) ( )}C t W n W n12 1 2Û ×则 (3—145) 
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４）模2移位列率卷积定理

模2移位列率卷积由下式来表示
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-

=
(3—146) 

依照模2时间卷积定理，模2移位列率卷积定理如下
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(3—147) 

仿照模2移位时间卷积定理的证明方法可得到证明。

则

如果



５）模2移位自相关定理

从模2 移位时间卷积(相关)定理可以得到模2移位

自相关定理。只要把定理中的 和 换

成 和 便可以得到模2移位自相关定

理：

)}({ 2 tf )}({ 2 nW

)}({ 1 tf )}({ 1 nW

{ ( )} { ( )}K t W n11 1
2Û

其证明方法也与模2移位时间卷积定理的证明一样。



从上式可以建立一个重要概念：模2移位自相关

序列的沃尔什变换等于序列的功率谱。也就是说，

模2移位下的自相关序列的沃尔什变换正好与序

列的功率谱相符合。



与傅里叶变换相比较，模2移位下的自相关与沃尔什

谱的关系相当于线性移位下的自相关序列的离散傅里

叶变换与其功率谱的关系。



６）帕斯维尔定理
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证明：设
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对 进行沃尔什反变换：11( )K t
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由于 l 仅是求和运算的变量，因此将 l 换成 t ，

即可得：



７）循环移位定理

把序列 循环地向左移若干位，例如移l位，

l=1，2，……，N-1，这样得到的序列叫循环移位

序列。如果用 来表示循环移位序列，则
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例如：有一个N=8的序列，

当l=3 的循环移位序列分别为



循环移位定理的内容如下：

如果 和它的循环移位序列 的沃尔

什－哈达玛变换分别是 和 ，则
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式中 1,log,,2,1 2 -××××××=== N,1,2,l Np p r !!



这个定理把序列的沃尔什－哈达玛变换系数与循

环移位序列的沃尔什哈达玛变换系数联系了起来。

即某些 之和与 之和是相等的。所以

这个定理又称为沃尔什－哈达玛变换的循环移位

不变性。下面用一个例子来验证本定理。
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例如设 ，经沃尔什－哈达玛变换

后的系数序列为
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从两个序列 与 可以看出
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显然，这些关系符合循环移位定理。

需要特别指出的是循环移位定理只适用于沃尔什

－哈达玛变换。此定理的更加一般性的证明，请

参阅有关书籍。



3.8 快速沃尔什变换

离散沃尔什变换也有快速算法。利用快速算法，完

成一次变换只须 次加减法，运算速度可

大大提高。当然快速算法只是一种运算方法，就变

换本身来说快速变换与非快速变换是没有区别的。

NN 2log



由于沃尔什－哈达玛矩阵有清晰的分解过程，而

且快速沃尔什变换可由沃尔什－哈达玛变换修改

得到，所以下面着重讨论沃尔什－哈达玛快速变

换。



式中 为正整数。pN p ,2=
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N
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由离散沃尔什－哈达玛变换的定义可知

这里以8阶沃尔什－哈达玛变换为例，讨论其分解

过程及快速算法。由克罗内克积可知
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其中 均为单位阵42  , II



由上面的分解有
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下面是具体计算 的公式及流程图。[ ] [ ] [ ])( ,)( ,)( 321 tftftf
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图 3—14 快速沃尔什-哈达玛变换信号流图（N=8）
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由此可得到另一种蝶形运算流程图。



图 3—15 快速沃尔什-哈达玛变换信号流图（第二种算法）



所以，任意 阶快速沃尔什－哈达玛变换蝶式

流图不难用上述方法引伸。
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对于一般情况， ，则矩阵 可

分解成P个矩阵 的乘积，即：

!!,1 ,0 ,2 == pN p [ ]pH 2

[ ]pG



3.9 多维变换

在图像处理中广泛运用的是二维变换，因此，下面

对二维沃尔什－哈达玛变换作一介绍。



二维沃尔什－哈达玛变换可用一维沃尔什－哈达玛

变换来计算，其步骤如下：

(1)、以 N=Nx对f(x,y) 中 Ny 个列中的每一列做变

换，得到 [Wx(u,y)]  ；

(2)、以 N=Ny 对 [Wx(u,y)]  中Nx行的每一行作变

换，即可得到二维变换系数 Wxy(u,v)  。



另外一种计算方法是将二维沃尔什－哈达玛变换当

做一维来计算。这种方法是将数据矩阵的各列依次

顺序排列，这样就形成由 NxNy个元素的列矩阵。然

后再按照一维沃尔什－哈达玛变换方法来计算。下

面用实例说明一下两种计算方法。



求 的二维沃尔什－哈达玛变换。

首先对 的每一列作变换：

例：设数据矩阵如下
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第二行
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最后得到二维变换系数矩阵
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以上是采用第一种算法得到的结果。



第二种算法如下：

将 f(x,y) 改写成列矩阵[Y]，即
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然后重排一下

ú
û

ù
ê
ë

é
=

3- 1- 1   1-
1- 3- 3   13

8
1)],([ vuWxy

显然，与第一种算法得到的结果一致。



二维沃尔什－哈达玛变换的矩阵式定义如下

[ ] [ ][ ][ ]ypxp HyxfH
NN

vuW
yx

xy 22
),(1),( = (3—171)

[ ] [ ][ ][ ]ypxp HvuWHyxf xy 22
),(),( = (3—172)

式中 和 分别为 阶和 阶哈达

玛矩阵。

][
2 xpH][

2 ypH xp2 yp2


