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第3章 图像处理中的正交变换
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数字图像处理的方法主要分为两大类：

一个是空间域处理法(或称空域法)

一个是频域处理法(或称变换域法)

在频域法处理中最为关键的预处理便是变换处理。

第3章 图像处理中的正交变换



这种变换一般是线性变换，其基本线性运算式是

严格可逆的，并且满足一定的正交条件，因此，

也将其称作酉变换。



在图像处理技术中正交变换被广泛地运用于图像

特征提取、图像增强、图像复原、图像识别以及

图像编码等处理中。本章将对几种主要的正交变

换进行较详细地讨论。



3.1 傅里叶变换

傅里叶变换是大家所熟知的正交变换。在一维信

号处理中得到了广泛应用，把这种处理方法推广

到图像处理中是很自然的事。



3.1.1 傅里叶变换的定义及基本概念

傅里叶变换的数学定义是严格的。设f(x)为x的函

数，如果满足下面的狄里赫莱条件：

（１）具有有限个间断点

（２）具有有限个极值点

（３）绝对可积



则有下列二式成立
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式中 x 时域变量，u 为频率变量。
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通常把以上公式称为傅里叶变换对。



函数 f(x) 的傅里叶变换一般是一个复量，它

可以由下式表示
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把 叫做 的傅里叶谱，而

叫相位谱。

F( )w f x( ) )(wf

或写成指数形式

其中：



傅里叶变换广泛用于频谱分析。

例：求图3—1所示波形f(x)的频谱。
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图 3—1 函数f(x)的波形
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例：求周期函数的傅里叶谱。

一个周期为T的信号 f(x)可用傅里叶级数来表示，即
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图3—3  周期函数的傅里叶谱



由上面的例子可以建立起下面几个概念：

１）只要满足狄里赫莱条件，连续函数就可以进行

傅里叶变换，实际上这个条件在工程运用中总是可

以满足的。

２）连续非周期函数的傅里叶谱是连续非周期函数

，连续周期函数的傅里叶谱是离散非周期函数。



傅里叶变换可推广到二维：如果二维函数f(x,y)满

足狄里赫莱条件，那么有下面二维傅里叶变换对：
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与一维傅里叶变换类似，二维傅里叶变换的幅度谱

和相位谱如下：



式中： F(u,v) 是幅度谱； 是相位谱；E(u,v)            

是能量谱。
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3.1.2 傅里叶变换的性质

傅里叶变换有许多重要性质。这些性质为实际运算

处理提供了极大便利。这里，仅就二维傅里叶变换

为例，列出其主要的几个性质：

１）可分性

这个性质说明一个二维傅里叶变换可用二遍一维傅

里叶变换来实现。
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２）线性

傅里叶变换是线性算子，即
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３）共轭对称性

如果 是 的傅里叶变换，

是 傅里叶变换的共轭函

数，那么
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４）旋转性

如果空间域函数旋转的角度为 ，那么在变换

域中此函数的傅里叶变换也旋转同样角度，即
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５）比例变换特性

如果 是 的傅里叶变换。a和b分

别为两个标量，那么
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６）帕斯维尔（Parseval）定理

这个性质也称为能量保持定理。如果 是

的傅里叶变换，那么有下式成立
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这个性质说明变换前后并不损失能量



７）相关定理

如果f(x), g(x)为两个一维时域函数，f(x,y)和g(x,y)为

两个二维空域函数，那么相关函数定义为：
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由以上定义可引出傅里叶变换的一个重要性质。这

就是相关定理，即

),(),(),(),( * vuGvuFyxogyxf ×Û
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８）卷积定理

如果f(x)和g(x)是一维时域函数，f (x, y) 和 g (x, y)是

二维空域函数，那么卷积函数定义为：
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式中 F(u,v) 和 G(u,v) 分别是 f(x,y) 和 g(x,y) 的傅里

叶变换。

),(),(),(),( vuGvuFyxgyxf *Û×

),(),(),(),( vuGvuFyxgyxf ×Û*

由此，可得到傅里叶变换的卷积定理如下



3.1.3 离散傅里叶变换

连续函数的傅里叶变换是波形分析的有力工具，这

在理论分析中具有很大价值；离散傅里叶变换使得

数学方法与计算机技术建立了联系，这就为傅里叶

变换这一数学工具在实用中开辟了一条宽阔的道路。

因此，它不仅仅有理论价值，而且在某种意义上说

它也有更重要的实用价值。



1.  离散傅里叶变换的定义

如果x(n)为数字序列，则其离散傅里叶正变换定义

由下式来表示
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如果要对一个连续信号进行计算机处理，那么就

必须经过离散化处理。这样对连续信号进行的傅

里叶变换的积分过程就会自然地蜕变为求和过程。

离散傅里叶变换就是直接处理离散时间信号的傅

里叶变换。



2. 离散傅里叶变换的性质

１）线性

如果时间序列 x(n) 与 y(n) 的傅里叶变换分别为 X(m) 

和Y(m)，则
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２）对称性

如果 ( ) ( )mXnx Û
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３）时间移位

如果序列向右（或向左）移动k位，则: 
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４）频率移位
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5）偶函数
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6）奇函数
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7）卷积定理

如果 x n X m y n Y m( ) ( ), ( ) ( )Û Û

则 x n y n X m Y m( ) ( ) ( ) ( )* Û ×

反之 x n y n X m Y m( ) ( ) ( ) ( )× Û *

也成立。



8）相关定理
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9）帕斯维尔定理

如果 x n X m( ) ( )Û

则
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3. 快速傅里叶变换(FFT) 

随着计算机和数字电路的迅速发展，离散傅里叶变

换已成为数字信号处理的重要工具。然而，它的计

算量较大，运算时间长，在某种程度上限制了它的

使用范围。快速算法可大大提高运算速度，在某些

应用场合已能作到实时处理。



快速傅里叶变换并不是一种新的变换，它是离散

傅里叶变换的一种算法。这种方法是在分析离散

傅里叶变换中的多余运算的基础上，消除这些重

复工作的思想指导下得到的，所以在运算中大大

节省了工作量，达到了快速运算的目的。



对于一个有限长序列{ x(n)}  ( 0≤n≤N-1) ，

它的傅里叶变换由下式表示
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将正变换式（3—48）展开可得到如下算式
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因此，傅里叶变换对可写成下式

(3—49)

(3—48)
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上面的方程式（3—50）可以用矩阵来表示

(3—51)



从上面的运算显然可以看出，要得到每一个频率

分量，需进行N次乘法和N-1次加法运算。要完

成整个变换需要N2次乘法和N(N-1)次加法运算。

当序列较长时，必然要花费大量的时间。



观察上述系数矩阵，发现Wmn是以为N周期的，

即
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例如，当N=8时，其周期性如图3—6所示。由于，

所以，当N=8时，可得：
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可见，离散傅里叶变换中的乘法运算有许多重复内

容。1965年库利－图基提出把原始的N点序列依次

分解成一系列短序列，然后，求出这些短序列的离

散傅里叶变换，以此来减少乘法运算。



快速傅里叶变换简称FFT。根据分解的特点一般

有两类：一类是按时间分解，一类是按频率分解。

下面介绍一下FFT的基本形式及运算蝶式流程图。



1) 基数２按时间分解的算法

这种算法的流程图如图3—7所示：

把x(n)分成偶数点和奇数点,即:
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图3—7  FFT蝶式运算流程图 (按时间分解)



2) 基数2按频率分解的算法

这种分解方法是直接把序列分为前 点和后

点两个序列，即
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图3—8  按频率分解FFT算法流程图



3) 用计算机实现快速付傅里叶变换
利用 FFT 蝶式流程图算法在计算机上实现快速傅
里叶变换必须解决如下问题：

1）、迭代次数 r 的确定；

2）、对偶节点的计算；

3）、加权系数 的计算；

4）、重新排序问题。
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P



1) 迭代次数 r 的确定

迭代次数 r 与 N 有关，可由下式确定

Nr 2log= (3—59)

式中 N是变换序列的长度。基数2的蝶式流程图是2

的整数次幂。例如，序列长度为8要三次迭代，长

度为16时就要4次迭代等。



2) 对偶节点的计算

在流程图中把标有xl (k)的点称为节点，其中下标l为

列数，也就是第几次迭代，例如，x1(k)则说明它是

第一次迭代的结果。k代表流程图中的行数，也就是

序列的序号数。



其中每一节点的值均是用前一节点对计算得来的。

例如，x1(0)和x1(4)均是x(0)和x(4)计算得来的。在蝶

式流程图中，把具有相同来源的一对节点叫做对偶

节点。



对偶节点的计算也就是求出在每次迭代中对偶节

点的间隔或者节距。由流程图可见，第一次迭代

的节距为 ，第二次迭代的节距为 ，第三

次迭代的节距为 等。由以上分析可得到如

下对偶节点的计算方法。
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FFT图3—7  蝶式运算流程图 (按时间分解)



如果某一节点为xl (k) ，那么，它的对偶节点为

2l l

Nx kæ ö+ç ÷
è ø

式中 l 为列号，k为行号，N 是序列长度。

k是序列的序号数,由大往小里推，不通！！！



(3—60)

例：如果序列长度N=8，求 的对偶节点。x2 1( )

可利用式（3—60）计算，得
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其正确性不难由流程图来验证。



3）加权系数 的计算WN
P

的计算主要是确定 p 值。

p值可用下述方法求得。
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（１）把k值写成r位的二进制数（k是序列的序号

数，r是总共所需迭代次数）；

（２）把这个二进制数右移 r-l  位，并把左边的空
位补零（结果仍为r位）；

（３）把这个右移后的二进制数进行比特倒转；

（４）把这比特倒转后的二进制数翻成十进制数就

得到p值。



例：求 的加权系数 。x2 2( ) W P
8

由 和 可知 k=2，l=2，N=8，则x2 2( ) W P
8

r N= = =log log2 2 8 3



（１）因为k=2，所以写成二进制数为010；

（２）r-l=3-2=1，把010右移一位得到001；

（３）把001做位序颠倒，即做比特倒转，

得到100；

（４）把100译成十进制数，得到4，所以

p=4，x2 (2)   的加权值为 。W8
4



结合对偶节点的计算，可以看出 具有下述规律：

如果某一节点上的加权系数为 ，则其对偶节点

的加权系数必然是 且
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所以一对对偶节点可用下式计算

(3—61)

(3—62)



4）重新排序

如果序列x(n)是按顺序排列的，经过蝶式运算后，

其变换序列X(m)是非顺序排列的，即乱序的；反

之，如果x(n)是乱序的，那么，就是顺序的。因此，

需加入重新排序程序，以保证x(n)与它的变换系数

X(m)的对应关系。



图3—7 FFT蝶式运算流程图 (按时间分解)



２）将 r 位的二进制数比特倒转，即：

)( 1210 -- rrl kkkkx !!

也就是 X m X k k k kr r( ) ( )= - -0 1 2 1!

３）求出倒置后的二进制数代表的十进制数，就可

以得到与 相对应的 的序号数。x k( ) X m( )

)()( 0121 kkkkxkx rrll !!--=

１）将最后一次迭代结果 xl (k) 中的序号数k写

成二进制数，即



4.6 二维离散傅里叶变换

一幅静止的数字图像可看做是二维数据阵列。因此，

数字图像处理主要是二维数据处理。二维离散傅里

叶变换的定义可用下面二式表示。正变换式为：
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反变换式为：



在图像处理中，一般总是选择方形阵列，所以通常情

况下总是 M=N   。因此，二维离散傅里叶变换多采

用下面两式形式。
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式中符号 F(u,v)   可称为空间频率。

1, ,2,1,0,

)(2exp),(1),(
1

0

1

0

-=

ú
û

ù
ê
ë

é
÷
ø
ö

ç
è
æ +

= åå
-

=

-

=

Nyx
N
vyuxjvuF

N
yxf

N

u

N

!!

u

p



二维离散傅里叶变换的可分离性是显而易见。
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这个性质可以使二维变换用两遍一维变换实现



图 3—9  二维傅里叶变换的处理结果



中心部分表示原图像中的低频部分，是图像中灰
度变化不太快的成分，反映了图像的主体框架；

频谱的四周，也即是高频区域是图像中灰度变化
较快的成分，一般反映着图像中的椒盐噪声(突
发性的白点或黑点)或者是图像内部变化剧烈的
边缘成分。

如果原始图像具有十分明显的规律，例如将一个
简单图样有规律的平移并填满整个图形，那么其
频谱一般表现为坐标原点周围的一圈亮点。


