完成实验2
This commit is contained in:
102
Lab2/code/4.py
Normal file
102
Lab2/code/4.py
Normal file
@@ -0,0 +1,102 @@
|
||||
import time
|
||||
import numpy as np
|
||||
import torch
|
||||
from torch.nn.functional import *
|
||||
from torch.utils.data import Dataset, DataLoader
|
||||
from torch import nn
|
||||
from torchvision import datasets, transforms
|
||||
from tqdm import tqdm
|
||||
from utils import *
|
||||
|
||||
import ipdb
|
||||
|
||||
class Model_4_1(nn.Module):
|
||||
def __init__(self, num_classes):
|
||||
super().__init__()
|
||||
self.flatten = nn.Flatten()
|
||||
self.fc1 = nn.Linear(in_features=28 * 28, out_features=512)
|
||||
self.fc2 = nn.Linear(in_features=512, out_features=num_classes)
|
||||
self.activate_fn = leaky_relu
|
||||
|
||||
def forward(self, x: torch.Tensor):
|
||||
x = self.flatten(x)
|
||||
x = self.fc1(x)
|
||||
x = self.activate_fn(x)
|
||||
|
||||
x = self.fc2(x)
|
||||
x = self.activate_fn(x)
|
||||
return x
|
||||
|
||||
|
||||
class Model_4_2(nn.Module):
|
||||
def __init__(self, num_classes):
|
||||
super().__init__()
|
||||
self.flatten = nn.Flatten()
|
||||
self.fc1 = nn.Linear(in_features=28 * 28, out_features=1024)
|
||||
self.fc2 = nn.Linear(in_features=1024, out_features=num_classes)
|
||||
self.activate_fn = leaky_relu
|
||||
|
||||
def forward(self, x: torch.Tensor):
|
||||
x = self.flatten(x)
|
||||
x = self.fc1(x)
|
||||
x = self.activate_fn(x)
|
||||
|
||||
x = self.fc2(x)
|
||||
x = self.activate_fn(x)
|
||||
return x
|
||||
|
||||
|
||||
class Model_4_3(nn.Module):
|
||||
def __init__(self, num_classes):
|
||||
super().__init__()
|
||||
self.flatten = nn.Flatten()
|
||||
self.fc1 = nn.Linear(in_features=28 * 28, out_features=512)
|
||||
self.fc2 = nn.Linear(in_features=512, out_features=512)
|
||||
self.fc3 = nn.Linear(in_features=512, out_features=num_classes)
|
||||
self.activate_fn = leaky_relu
|
||||
|
||||
def forward(self, x: torch.Tensor):
|
||||
x = self.flatten(x)
|
||||
x = self.fc1(x)
|
||||
x = self.activate_fn(x)
|
||||
|
||||
x = self.fc2(x)
|
||||
x = self.activate_fn(x)
|
||||
|
||||
x = self.fc3(x)
|
||||
x = self.activate_fn(x)
|
||||
return x
|
||||
|
||||
|
||||
class Model_4_4(nn.Module):
|
||||
def __init__(self, num_classes):
|
||||
super().__init__()
|
||||
self.flatten = nn.Flatten()
|
||||
self.fc1 = nn.Linear(in_features=28 * 28, out_features=1024)
|
||||
self.fc2 = nn.Linear(in_features=1024, out_features=1024)
|
||||
self.fc3 = nn.Linear(in_features=1024, out_features=num_classes)
|
||||
self.activate_fn = leaky_relu
|
||||
|
||||
def forward(self, x: torch.Tensor):
|
||||
x = self.flatten(x)
|
||||
x = self.fc1(x)
|
||||
x = self.activate_fn(x)
|
||||
|
||||
x = self.fc2(x)
|
||||
x = self.activate_fn(x)
|
||||
|
||||
x = self.fc3(x)
|
||||
x = self.activate_fn(x)
|
||||
return x
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
print("模型1开始训练,hidden_size=512,hidden_layer=1 :")
|
||||
train_loss_4_1, test_acc_4_1 = train_MNIST_CLS(Model=Model_4_1) # hidden_size=512, hidden_layer=1
|
||||
print("模型2开始训练,hidden_size=1024,hidden_layer=1 :")
|
||||
train_loss_4_2, test_acc_4_2 = train_MNIST_CLS(Model=Model_4_2) # hidden_size=1024, hidden_layer=1
|
||||
print("模型3开始训练,hidden_size=512,hidden_layer=2 :")
|
||||
train_loss_4_3, test_acc_4_3 = train_MNIST_CLS(Model=Model_4_3) # hidden_size=512, hidden_layer=2
|
||||
print("模型4开始训练,hidden_size=1024,hidden_layer=2 :")
|
||||
train_loss_4_4, test_acc_4_4 = train_MNIST_CLS(Model=Model_4_4) # hidden_size=1024, hidden_layer=2
|
||||
|
||||
Reference in New Issue
Block a user