解决手动softmax模型训练梯度爆炸问题
This commit is contained in:
@@ -8,9 +8,9 @@ from torch.utils.data import DataLoader
|
||||
import ipdb
|
||||
|
||||
|
||||
class Model(nn.Module):
|
||||
class Model_3_2(nn.Module):
|
||||
def __init__(self, num_classes):
|
||||
super(Model, self).__init__()
|
||||
super(Model_3_2, self).__init__()
|
||||
self.flatten = nn.Flatten()
|
||||
self.linear = nn.Linear(28 * 28, num_classes)
|
||||
|
||||
@@ -20,7 +20,7 @@ class Model(nn.Module):
|
||||
return x
|
||||
|
||||
|
||||
learning_rate = 5e-3
|
||||
learning_rate = 5e-2
|
||||
num_epochs = 10
|
||||
batch_size = 4096
|
||||
num_classes = 10
|
||||
@@ -29,33 +29,33 @@ device = "cuda:0" if torch.cuda.is_available() else "cpu"
|
||||
transform = transforms.Compose(
|
||||
[
|
||||
transforms.ToTensor(),
|
||||
transforms.Normalize((0.5,), (0.5,)),
|
||||
transforms.Normalize((0.5,), (1.0,)),
|
||||
]
|
||||
)
|
||||
train_dataset = datasets.FashionMNIST(
|
||||
root="./dataset", train=True, transform=transform, download=True
|
||||
root="../dataset", train=True, transform=transform, download=True
|
||||
)
|
||||
test_dataset = datasets.FashionMNIST(
|
||||
root="./dataset", train=False, transform=transform, download=True
|
||||
root="../dataset", train=False, transform=transform, download=True
|
||||
)
|
||||
train_loader = DataLoader(
|
||||
dataset=train_dataset,
|
||||
batch_size=batch_size,
|
||||
shuffle=True,
|
||||
num_workers=4,
|
||||
num_workers=14,
|
||||
pin_memory=True,
|
||||
)
|
||||
test_loader = DataLoader(
|
||||
dataset=test_dataset,
|
||||
batch_size=batch_size,
|
||||
shuffle=True,
|
||||
num_workers=4,
|
||||
num_workers=14,
|
||||
pin_memory=True,
|
||||
)
|
||||
|
||||
model = Model(num_classes).to(device)
|
||||
model = Model_3_2(num_classes).to(device)
|
||||
criterion = nn.CrossEntropyLoss()
|
||||
optimizer = torch.optim.Adam(model.parameters(), lr=learning_rate)
|
||||
optimizer = torch.optim.SGD(model.parameters(), lr=learning_rate)
|
||||
|
||||
for epoch in range(num_epochs):
|
||||
total_epoch_loss = 0
|
||||
|
||||
Reference in New Issue
Block a user