解决手动softmax模型训练梯度爆炸问题

This commit is contained in:
2023-10-10 19:11:21 +08:00
parent c384059131
commit 9c8f12e431
4 changed files with 33 additions and 26 deletions

View File

@@ -8,9 +8,9 @@ from torch.utils.data import DataLoader
import ipdb
class Model(nn.Module):
class Model_3_2(nn.Module):
def __init__(self, num_classes):
super(Model, self).__init__()
super(Model_3_2, self).__init__()
self.flatten = nn.Flatten()
self.linear = nn.Linear(28 * 28, num_classes)
@@ -20,7 +20,7 @@ class Model(nn.Module):
return x
learning_rate = 5e-3
learning_rate = 5e-2
num_epochs = 10
batch_size = 4096
num_classes = 10
@@ -29,33 +29,33 @@ device = "cuda:0" if torch.cuda.is_available() else "cpu"
transform = transforms.Compose(
[
transforms.ToTensor(),
transforms.Normalize((0.5,), (0.5,)),
transforms.Normalize((0.5,), (1.0,)),
]
)
train_dataset = datasets.FashionMNIST(
root="./dataset", train=True, transform=transform, download=True
root="../dataset", train=True, transform=transform, download=True
)
test_dataset = datasets.FashionMNIST(
root="./dataset", train=False, transform=transform, download=True
root="../dataset", train=False, transform=transform, download=True
)
train_loader = DataLoader(
dataset=train_dataset,
batch_size=batch_size,
shuffle=True,
num_workers=4,
num_workers=14,
pin_memory=True,
)
test_loader = DataLoader(
dataset=test_dataset,
batch_size=batch_size,
shuffle=True,
num_workers=4,
num_workers=14,
pin_memory=True,
)
model = Model(num_classes).to(device)
model = Model_3_2(num_classes).to(device)
criterion = nn.CrossEntropyLoss()
optimizer = torch.optim.Adam(model.parameters(), lr=learning_rate)
optimizer = torch.optim.SGD(model.parameters(), lr=learning_rate)
for epoch in range(num_epochs):
total_epoch_loss = 0