修改requirements.txt文件,添加main函数判断

This commit is contained in:
2023-10-11 00:05:07 +08:00
parent d7e6706623
commit 1e25f418ae
5 changed files with 244 additions and 358 deletions

View File

@@ -96,73 +96,76 @@ class Model_3_1:
return self.params
learning_rate = 5e-1
num_epochs = 10
batch_size = 4096
num_classes = 10
device = "cuda:0" if torch.cuda.is_available() else "cpu"
if __name__ == "__main__":
learning_rate = 5e-1
num_epochs = 10
batch_size = 4096
num_classes = 10
device = "cuda:0" if torch.cuda.is_available() else "cpu"
transform = transforms.Compose(
[
transforms.ToTensor(),
transforms.Normalize((0.5,), (1.0,)),
]
)
train_dataset = datasets.FashionMNIST(
root="../dataset", train=True, transform=transform, download=True
)
test_dataset = datasets.FashionMNIST(
root="../dataset", train=False, transform=transform, download=True
)
train_loader = DataLoader(
dataset=train_dataset,
batch_size=batch_size,
shuffle=True,
num_workers=14,
pin_memory=True,
)
test_loader = DataLoader(
dataset=test_dataset,
batch_size=batch_size,
shuffle=True,
num_workers=14,
pin_memory=True,
)
model = Model_3_1(num_classes).to(device)
criterion = My_CrossEntropyLoss()
optimizer = My_optimizer(model.parameters(), lr=learning_rate)
for epoch in range(num_epochs):
total_epoch_loss = 0
for index, (images, targets) in tqdm(
enumerate(train_loader), total=len(train_loader)
):
optimizer.zero_grad()
images = images.to(device)
targets = targets.to(device).to(dtype=torch.long)
one_hot_targets = (
my_one_hot(targets, num_classes=num_classes).to(device).to(dtype=torch.long)
)
outputs = model(images)
loss = criterion(outputs, one_hot_targets)
total_epoch_loss += loss
loss.backward()
optimizer.step()
total_acc = 0
with torch.no_grad():
for index, (image, targets) in tqdm(
enumerate(test_loader), total=len(test_loader)
):
image = image.to(device)
targets = targets.to(device)
outputs = model(image)
total_acc += (outputs.argmax(1) == targets).sum()
print(
f"Epoch {epoch + 1}/{num_epochs} Train, Loss: {total_epoch_loss}, Acc: {total_acc / len(test_dataset)}"
transform = transforms.Compose(
[
transforms.ToTensor(),
transforms.Normalize((0.5,), (1.0,)),
]
)
train_dataset = datasets.FashionMNIST(
root="../dataset", train=True, transform=transform, download=True
)
test_dataset = datasets.FashionMNIST(
root="../dataset", train=False, transform=transform, download=True
)
train_loader = DataLoader(
dataset=train_dataset,
batch_size=batch_size,
shuffle=True,
num_workers=14,
pin_memory=True,
)
test_loader = DataLoader(
dataset=test_dataset,
batch_size=batch_size,
shuffle=True,
num_workers=14,
pin_memory=True,
)
model = Model_3_1(num_classes).to(device)
criterion = My_CrossEntropyLoss()
optimizer = My_optimizer(model.parameters(), lr=learning_rate)
for epoch in range(num_epochs):
total_epoch_loss = 0
for index, (images, targets) in tqdm(
enumerate(train_loader), total=len(train_loader)
):
optimizer.zero_grad()
images = images.to(device)
targets = targets.to(device).to(dtype=torch.long)
one_hot_targets = (
my_one_hot(targets, num_classes=num_classes)
.to(device)
.to(dtype=torch.long)
)
outputs = model(images)
loss = criterion(outputs, one_hot_targets)
total_epoch_loss += loss
loss.backward()
optimizer.step()
total_acc = 0
with torch.no_grad():
for index, (image, targets) in tqdm(
enumerate(test_loader), total=len(test_loader)
):
image = image.to(device)
targets = targets.to(device)
outputs = model(image)
total_acc += (outputs.argmax(1) == targets).sum()
print(
f"Epoch {epoch + 1}/{num_epochs} Train, Loss: {total_epoch_loss}, Acc: {total_acc / len(test_dataset)}"
)