修改requirements.txt文件,添加main函数判断

This commit is contained in:
2023-10-11 00:05:07 +08:00
parent d7e6706623
commit 1e25f418ae
5 changed files with 244 additions and 358 deletions

View File

@@ -95,53 +95,54 @@ class My_Dataset(Dataset):
return x, y
learning_rate = 5e-2
num_epochs = 10
batch_size = 1024
device = "cuda:0" if torch.cuda.is_available() else "cpu"
if __name__ == "__main__":
learning_rate = 5e-2
num_epochs = 10
batch_size = 1024
device = "cuda:0" if torch.cuda.is_available() else "cpu"
dataset = My_Dataset()
dataloader = DataLoader(
dataset=dataset,
batch_size=batch_size,
shuffle=True,
num_workers=14,
pin_memory=True,
)
model = Model_2_1().to(device)
criterion = My_BCELoss()
optimizer = My_optimizer(model.parameters(), lr=learning_rate)
for epoch in range(num_epochs):
total_epoch_loss = 0
total_epoch_pred = 0
total_epoch_target = 0
for index, (x, targets) in tqdm(enumerate(dataloader), total=len(dataloader)):
optimizer.zero_grad()
x = x.to(device).to(dtype=torch.float32)
targets = targets.to(device).to(dtype=torch.float32)
x = x.unsqueeze(1)
y_pred = model(x)
loss = criterion(y_pred, targets)
total_epoch_loss += loss.item()
total_epoch_target += targets.sum().item()
total_epoch_pred += y_pred.sum().item()
loss.backward()
optimizer.step()
print(
f"Epoch {epoch + 1}/{num_epochs}, Loss: {total_epoch_loss}, Acc: {1 - abs(total_epoch_pred - total_epoch_target) / total_epoch_target}"
dataset = My_Dataset()
dataloader = DataLoader(
dataset=dataset,
batch_size=batch_size,
shuffle=True,
num_workers=14,
pin_memory=True,
)
with torch.no_grad():
test_data = (np.array([[2]]) - dataset.min_x) / (dataset.max_x - dataset.min_x)
test_data = Variable(
torch.tensor(test_data, dtype=torch.float64), requires_grad=False
).to(device)
predicted = model(test_data).to("cpu")
print(
f"Model weights: {model.linear.weight.item()}, bias: {model.linear.bias.item()}"
)
print(f"Prediction for test data: {predicted.item()}")
model = Model_2_1().to(device)
criterion = My_BCELoss()
optimizer = My_optimizer(model.parameters(), lr=learning_rate)
for epoch in range(num_epochs):
total_epoch_loss = 0
total_epoch_pred = 0
total_epoch_target = 0
for index, (x, targets) in tqdm(enumerate(dataloader), total=len(dataloader)):
optimizer.zero_grad()
x = x.to(device).to(dtype=torch.float32)
targets = targets.to(device).to(dtype=torch.float32)
x = x.unsqueeze(1)
y_pred = model(x)
loss = criterion(y_pred, targets)
total_epoch_loss += loss.item()
total_epoch_target += targets.sum().item()
total_epoch_pred += y_pred.sum().item()
loss.backward()
optimizer.step()
print(
f"Epoch {epoch + 1}/{num_epochs}, Loss: {total_epoch_loss}, Acc: {1 - abs(total_epoch_pred - total_epoch_target) / total_epoch_target}"
)
with torch.no_grad():
test_data = (np.array([[2]]) - dataset.min_x) / (dataset.max_x - dataset.min_x)
test_data = Variable(
torch.tensor(test_data, dtype=torch.float64), requires_grad=False
).to(device)
predicted = model(test_data).to("cpu")
print(
f"Model weights: {model.linear.weight.item()}, bias: {model.linear.bias.item()}"
)
print(f"Prediction for test data: {predicted.item()}")

View File

@@ -38,56 +38,57 @@ class My_Dataset(Dataset):
return x, y
learning_rate = 5e-2
num_epochs = 10
batch_size = 1024
device = "cuda:0" if torch.cuda.is_available() else "cpu"
if __name__ == "__main__":
learning_rate = 5e-2
num_epochs = 10
batch_size = 1024
device = "cuda:0" if torch.cuda.is_available() else "cpu"
dataset = My_Dataset()
dataloader = DataLoader(
dataset=dataset,
batch_size=batch_size,
shuffle=True,
num_workers=14,
pin_memory=True,
)
model = Model_2_2().to(device)
criterion = nn.BCELoss()
optimizer = torch.optim.Adam(model.parameters(), lr=learning_rate)
for epoch in range(num_epochs):
total_epoch_loss = 0
total_epoch_pred = 0
total_epoch_target = 0
for index, (x, targets) in tqdm(enumerate(dataloader), total=len(dataloader)):
optimizer.zero_grad()
x = x.to(device)
targets = targets.to(device)
x = x.unsqueeze(1)
targets = targets.unsqueeze(1)
y_pred = model(x)
loss = criterion(y_pred, targets)
total_epoch_loss += loss.item()
total_epoch_target += targets.sum().item()
total_epoch_pred += y_pred.sum().item()
loss.backward()
optimizer.step()
print(
f"Epoch {epoch + 1}/{num_epochs}, Loss: {total_epoch_loss}, Acc: {1 - abs(total_epoch_pred - total_epoch_target) / total_epoch_target}"
dataset = My_Dataset()
dataloader = DataLoader(
dataset=dataset,
batch_size=batch_size,
shuffle=True,
num_workers=14,
pin_memory=True,
)
with torch.no_grad():
test_data = (np.array([[2]]) - dataset.min_x) / (dataset.max_x - dataset.min_x)
test_data = Variable(
torch.tensor(test_data, dtype=torch.float64), requires_grad=False
).to(device)
predicted = model(test_data).to("cpu")
print(
f"Model weights: {model.linear.weight.item()}, bias: {model.linear.bias.item()}"
)
print(f"Prediction for test data: {predicted.item()}")
model = Model_2_2().to(device)
criterion = nn.BCELoss()
optimizer = torch.optim.Adam(model.parameters(), lr=learning_rate)
for epoch in range(num_epochs):
total_epoch_loss = 0
total_epoch_pred = 0
total_epoch_target = 0
for index, (x, targets) in tqdm(enumerate(dataloader), total=len(dataloader)):
optimizer.zero_grad()
x = x.to(device)
targets = targets.to(device)
x = x.unsqueeze(1)
targets = targets.unsqueeze(1)
y_pred = model(x)
loss = criterion(y_pred, targets)
total_epoch_loss += loss.item()
total_epoch_target += targets.sum().item()
total_epoch_pred += y_pred.sum().item()
loss.backward()
optimizer.step()
print(
f"Epoch {epoch + 1}/{num_epochs}, Loss: {total_epoch_loss}, Acc: {1 - abs(total_epoch_pred - total_epoch_target) / total_epoch_target}"
)
with torch.no_grad():
test_data = (np.array([[2]]) - dataset.min_x) / (dataset.max_x - dataset.min_x)
test_data = Variable(
torch.tensor(test_data, dtype=torch.float64), requires_grad=False
).to(device)
predicted = model(test_data).to("cpu")
print(
f"Model weights: {model.linear.weight.item()}, bias: {model.linear.bias.item()}"
)
print(f"Prediction for test data: {predicted.item()}")

View File

@@ -96,73 +96,76 @@ class Model_3_1:
return self.params
learning_rate = 5e-1
num_epochs = 10
batch_size = 4096
num_classes = 10
device = "cuda:0" if torch.cuda.is_available() else "cpu"
if __name__ == "__main__":
learning_rate = 5e-1
num_epochs = 10
batch_size = 4096
num_classes = 10
device = "cuda:0" if torch.cuda.is_available() else "cpu"
transform = transforms.Compose(
[
transforms.ToTensor(),
transforms.Normalize((0.5,), (1.0,)),
]
)
train_dataset = datasets.FashionMNIST(
root="../dataset", train=True, transform=transform, download=True
)
test_dataset = datasets.FashionMNIST(
root="../dataset", train=False, transform=transform, download=True
)
train_loader = DataLoader(
dataset=train_dataset,
batch_size=batch_size,
shuffle=True,
num_workers=14,
pin_memory=True,
)
test_loader = DataLoader(
dataset=test_dataset,
batch_size=batch_size,
shuffle=True,
num_workers=14,
pin_memory=True,
)
model = Model_3_1(num_classes).to(device)
criterion = My_CrossEntropyLoss()
optimizer = My_optimizer(model.parameters(), lr=learning_rate)
for epoch in range(num_epochs):
total_epoch_loss = 0
for index, (images, targets) in tqdm(
enumerate(train_loader), total=len(train_loader)
):
optimizer.zero_grad()
images = images.to(device)
targets = targets.to(device).to(dtype=torch.long)
one_hot_targets = (
my_one_hot(targets, num_classes=num_classes).to(device).to(dtype=torch.long)
)
outputs = model(images)
loss = criterion(outputs, one_hot_targets)
total_epoch_loss += loss
loss.backward()
optimizer.step()
total_acc = 0
with torch.no_grad():
for index, (image, targets) in tqdm(
enumerate(test_loader), total=len(test_loader)
):
image = image.to(device)
targets = targets.to(device)
outputs = model(image)
total_acc += (outputs.argmax(1) == targets).sum()
print(
f"Epoch {epoch + 1}/{num_epochs} Train, Loss: {total_epoch_loss}, Acc: {total_acc / len(test_dataset)}"
transform = transforms.Compose(
[
transforms.ToTensor(),
transforms.Normalize((0.5,), (1.0,)),
]
)
train_dataset = datasets.FashionMNIST(
root="../dataset", train=True, transform=transform, download=True
)
test_dataset = datasets.FashionMNIST(
root="../dataset", train=False, transform=transform, download=True
)
train_loader = DataLoader(
dataset=train_dataset,
batch_size=batch_size,
shuffle=True,
num_workers=14,
pin_memory=True,
)
test_loader = DataLoader(
dataset=test_dataset,
batch_size=batch_size,
shuffle=True,
num_workers=14,
pin_memory=True,
)
model = Model_3_1(num_classes).to(device)
criterion = My_CrossEntropyLoss()
optimizer = My_optimizer(model.parameters(), lr=learning_rate)
for epoch in range(num_epochs):
total_epoch_loss = 0
for index, (images, targets) in tqdm(
enumerate(train_loader), total=len(train_loader)
):
optimizer.zero_grad()
images = images.to(device)
targets = targets.to(device).to(dtype=torch.long)
one_hot_targets = (
my_one_hot(targets, num_classes=num_classes)
.to(device)
.to(dtype=torch.long)
)
outputs = model(images)
loss = criterion(outputs, one_hot_targets)
total_epoch_loss += loss
loss.backward()
optimizer.step()
total_acc = 0
with torch.no_grad():
for index, (image, targets) in tqdm(
enumerate(test_loader), total=len(test_loader)
):
image = image.to(device)
targets = targets.to(device)
outputs = model(image)
total_acc += (outputs.argmax(1) == targets).sum()
print(
f"Epoch {epoch + 1}/{num_epochs} Train, Loss: {total_epoch_loss}, Acc: {total_acc / len(test_dataset)}"
)

View File

@@ -20,77 +20,78 @@ class Model_3_2(nn.Module):
return x
learning_rate = 5e-2
num_epochs = 10
batch_size = 4096
num_classes = 10
device = "cuda:0" if torch.cuda.is_available() else "cpu"
if __name__ == "__main__":
learning_rate = 5e-2
num_epochs = 10
batch_size = 4096
num_classes = 10
device = "cuda:0" if torch.cuda.is_available() else "cpu"
transform = transforms.Compose(
[
transforms.ToTensor(),
transforms.Normalize((0.5,), (1.0,)),
]
)
train_dataset = datasets.FashionMNIST(
root="../dataset", train=True, transform=transform, download=True
)
test_dataset = datasets.FashionMNIST(
root="../dataset", train=False, transform=transform, download=True
)
train_loader = DataLoader(
dataset=train_dataset,
batch_size=batch_size,
shuffle=True,
num_workers=14,
pin_memory=True,
)
test_loader = DataLoader(
dataset=test_dataset,
batch_size=batch_size,
shuffle=True,
num_workers=14,
pin_memory=True,
)
model = Model_3_2(num_classes).to(device)
criterion = nn.CrossEntropyLoss()
optimizer = torch.optim.SGD(model.parameters(), lr=learning_rate)
for epoch in range(num_epochs):
total_epoch_loss = 0
model.train()
for index, (images, targets) in tqdm(
enumerate(train_loader), total=len(train_loader)
):
optimizer.zero_grad()
images = images.to(device)
targets = targets.to(device)
one_hot_targets = (
torch.nn.functional.one_hot(targets, num_classes=num_classes)
.to(device)
.to(dtype=torch.float32)
)
outputs = model(images)
loss = criterion(outputs, one_hot_targets)
total_epoch_loss += loss
loss.backward()
optimizer.step()
model.eval()
total_acc = 0
with torch.no_grad():
for index, (image, targets) in tqdm(
enumerate(test_loader), total=len(test_loader)
):
image = image.to(device)
targets = targets.to(device)
outputs = model(image)
total_acc += (outputs.argmax(1) == targets).sum()
print(
f"Epoch {epoch + 1}/{num_epochs} Train, Loss: {total_epoch_loss}, Acc: {total_acc / len(test_dataset)}"
transform = transforms.Compose(
[
transforms.ToTensor(),
transforms.Normalize((0.5,), (1.0,)),
]
)
train_dataset = datasets.FashionMNIST(
root="../dataset", train=True, transform=transform, download=True
)
test_dataset = datasets.FashionMNIST(
root="../dataset", train=False, transform=transform, download=True
)
train_loader = DataLoader(
dataset=train_dataset,
batch_size=batch_size,
shuffle=True,
num_workers=14,
pin_memory=True,
)
test_loader = DataLoader(
dataset=test_dataset,
batch_size=batch_size,
shuffle=True,
num_workers=14,
pin_memory=True,
)
model = Model_3_2(num_classes).to(device)
criterion = nn.CrossEntropyLoss()
optimizer = torch.optim.SGD(model.parameters(), lr=learning_rate)
for epoch in range(num_epochs):
total_epoch_loss = 0
model.train()
for index, (images, targets) in tqdm(
enumerate(train_loader), total=len(train_loader)
):
optimizer.zero_grad()
images = images.to(device)
targets = targets.to(device)
one_hot_targets = (
torch.nn.functional.one_hot(targets, num_classes=num_classes)
.to(device)
.to(dtype=torch.float32)
)
outputs = model(images)
loss = criterion(outputs, one_hot_targets)
total_epoch_loss += loss
loss.backward()
optimizer.step()
model.eval()
total_acc = 0
with torch.no_grad():
for index, (image, targets) in tqdm(
enumerate(test_loader), total=len(test_loader)
):
image = image.to(device)
targets = targets.to(device)
outputs = model(image)
total_acc += (outputs.argmax(1) == targets).sum()
print(
f"Epoch {epoch + 1}/{num_epochs} Train, Loss: {total_epoch_loss}, Acc: {total_acc / len(test_dataset)}"
)