修改requirements.txt文件,添加main函数判断
This commit is contained in:
@@ -95,53 +95,54 @@ class My_Dataset(Dataset):
|
||||
return x, y
|
||||
|
||||
|
||||
learning_rate = 5e-2
|
||||
num_epochs = 10
|
||||
batch_size = 1024
|
||||
device = "cuda:0" if torch.cuda.is_available() else "cpu"
|
||||
if __name__ == "__main__":
|
||||
learning_rate = 5e-2
|
||||
num_epochs = 10
|
||||
batch_size = 1024
|
||||
device = "cuda:0" if torch.cuda.is_available() else "cpu"
|
||||
|
||||
dataset = My_Dataset()
|
||||
dataloader = DataLoader(
|
||||
dataset=dataset,
|
||||
batch_size=batch_size,
|
||||
shuffle=True,
|
||||
num_workers=14,
|
||||
pin_memory=True,
|
||||
)
|
||||
|
||||
model = Model_2_1().to(device)
|
||||
criterion = My_BCELoss()
|
||||
optimizer = My_optimizer(model.parameters(), lr=learning_rate)
|
||||
|
||||
for epoch in range(num_epochs):
|
||||
total_epoch_loss = 0
|
||||
total_epoch_pred = 0
|
||||
total_epoch_target = 0
|
||||
for index, (x, targets) in tqdm(enumerate(dataloader), total=len(dataloader)):
|
||||
optimizer.zero_grad()
|
||||
x = x.to(device).to(dtype=torch.float32)
|
||||
targets = targets.to(device).to(dtype=torch.float32)
|
||||
x = x.unsqueeze(1)
|
||||
y_pred = model(x)
|
||||
loss = criterion(y_pred, targets)
|
||||
total_epoch_loss += loss.item()
|
||||
total_epoch_target += targets.sum().item()
|
||||
total_epoch_pred += y_pred.sum().item()
|
||||
|
||||
loss.backward()
|
||||
optimizer.step()
|
||||
|
||||
print(
|
||||
f"Epoch {epoch + 1}/{num_epochs}, Loss: {total_epoch_loss}, Acc: {1 - abs(total_epoch_pred - total_epoch_target) / total_epoch_target}"
|
||||
dataset = My_Dataset()
|
||||
dataloader = DataLoader(
|
||||
dataset=dataset,
|
||||
batch_size=batch_size,
|
||||
shuffle=True,
|
||||
num_workers=14,
|
||||
pin_memory=True,
|
||||
)
|
||||
|
||||
with torch.no_grad():
|
||||
test_data = (np.array([[2]]) - dataset.min_x) / (dataset.max_x - dataset.min_x)
|
||||
test_data = Variable(
|
||||
torch.tensor(test_data, dtype=torch.float64), requires_grad=False
|
||||
).to(device)
|
||||
predicted = model(test_data).to("cpu")
|
||||
print(
|
||||
f"Model weights: {model.linear.weight.item()}, bias: {model.linear.bias.item()}"
|
||||
)
|
||||
print(f"Prediction for test data: {predicted.item()}")
|
||||
model = Model_2_1().to(device)
|
||||
criterion = My_BCELoss()
|
||||
optimizer = My_optimizer(model.parameters(), lr=learning_rate)
|
||||
|
||||
for epoch in range(num_epochs):
|
||||
total_epoch_loss = 0
|
||||
total_epoch_pred = 0
|
||||
total_epoch_target = 0
|
||||
for index, (x, targets) in tqdm(enumerate(dataloader), total=len(dataloader)):
|
||||
optimizer.zero_grad()
|
||||
x = x.to(device).to(dtype=torch.float32)
|
||||
targets = targets.to(device).to(dtype=torch.float32)
|
||||
x = x.unsqueeze(1)
|
||||
y_pred = model(x)
|
||||
loss = criterion(y_pred, targets)
|
||||
total_epoch_loss += loss.item()
|
||||
total_epoch_target += targets.sum().item()
|
||||
total_epoch_pred += y_pred.sum().item()
|
||||
|
||||
loss.backward()
|
||||
optimizer.step()
|
||||
|
||||
print(
|
||||
f"Epoch {epoch + 1}/{num_epochs}, Loss: {total_epoch_loss}, Acc: {1 - abs(total_epoch_pred - total_epoch_target) / total_epoch_target}"
|
||||
)
|
||||
|
||||
with torch.no_grad():
|
||||
test_data = (np.array([[2]]) - dataset.min_x) / (dataset.max_x - dataset.min_x)
|
||||
test_data = Variable(
|
||||
torch.tensor(test_data, dtype=torch.float64), requires_grad=False
|
||||
).to(device)
|
||||
predicted = model(test_data).to("cpu")
|
||||
print(
|
||||
f"Model weights: {model.linear.weight.item()}, bias: {model.linear.bias.item()}"
|
||||
)
|
||||
print(f"Prediction for test data: {predicted.item()}")
|
||||
|
||||
101
Lab1/code/2.2.py
101
Lab1/code/2.2.py
@@ -38,56 +38,57 @@ class My_Dataset(Dataset):
|
||||
return x, y
|
||||
|
||||
|
||||
learning_rate = 5e-2
|
||||
num_epochs = 10
|
||||
batch_size = 1024
|
||||
device = "cuda:0" if torch.cuda.is_available() else "cpu"
|
||||
if __name__ == "__main__":
|
||||
learning_rate = 5e-2
|
||||
num_epochs = 10
|
||||
batch_size = 1024
|
||||
device = "cuda:0" if torch.cuda.is_available() else "cpu"
|
||||
|
||||
dataset = My_Dataset()
|
||||
dataloader = DataLoader(
|
||||
dataset=dataset,
|
||||
batch_size=batch_size,
|
||||
shuffle=True,
|
||||
num_workers=14,
|
||||
pin_memory=True,
|
||||
)
|
||||
|
||||
model = Model_2_2().to(device)
|
||||
criterion = nn.BCELoss()
|
||||
optimizer = torch.optim.Adam(model.parameters(), lr=learning_rate)
|
||||
|
||||
for epoch in range(num_epochs):
|
||||
total_epoch_loss = 0
|
||||
total_epoch_pred = 0
|
||||
total_epoch_target = 0
|
||||
for index, (x, targets) in tqdm(enumerate(dataloader), total=len(dataloader)):
|
||||
optimizer.zero_grad()
|
||||
|
||||
x = x.to(device)
|
||||
targets = targets.to(device)
|
||||
|
||||
x = x.unsqueeze(1)
|
||||
targets = targets.unsqueeze(1)
|
||||
y_pred = model(x)
|
||||
loss = criterion(y_pred, targets)
|
||||
total_epoch_loss += loss.item()
|
||||
total_epoch_target += targets.sum().item()
|
||||
total_epoch_pred += y_pred.sum().item()
|
||||
|
||||
loss.backward()
|
||||
optimizer.step()
|
||||
|
||||
print(
|
||||
f"Epoch {epoch + 1}/{num_epochs}, Loss: {total_epoch_loss}, Acc: {1 - abs(total_epoch_pred - total_epoch_target) / total_epoch_target}"
|
||||
dataset = My_Dataset()
|
||||
dataloader = DataLoader(
|
||||
dataset=dataset,
|
||||
batch_size=batch_size,
|
||||
shuffle=True,
|
||||
num_workers=14,
|
||||
pin_memory=True,
|
||||
)
|
||||
|
||||
with torch.no_grad():
|
||||
test_data = (np.array([[2]]) - dataset.min_x) / (dataset.max_x - dataset.min_x)
|
||||
test_data = Variable(
|
||||
torch.tensor(test_data, dtype=torch.float64), requires_grad=False
|
||||
).to(device)
|
||||
predicted = model(test_data).to("cpu")
|
||||
print(
|
||||
f"Model weights: {model.linear.weight.item()}, bias: {model.linear.bias.item()}"
|
||||
)
|
||||
print(f"Prediction for test data: {predicted.item()}")
|
||||
model = Model_2_2().to(device)
|
||||
criterion = nn.BCELoss()
|
||||
optimizer = torch.optim.Adam(model.parameters(), lr=learning_rate)
|
||||
|
||||
for epoch in range(num_epochs):
|
||||
total_epoch_loss = 0
|
||||
total_epoch_pred = 0
|
||||
total_epoch_target = 0
|
||||
for index, (x, targets) in tqdm(enumerate(dataloader), total=len(dataloader)):
|
||||
optimizer.zero_grad()
|
||||
|
||||
x = x.to(device)
|
||||
targets = targets.to(device)
|
||||
|
||||
x = x.unsqueeze(1)
|
||||
targets = targets.unsqueeze(1)
|
||||
y_pred = model(x)
|
||||
loss = criterion(y_pred, targets)
|
||||
total_epoch_loss += loss.item()
|
||||
total_epoch_target += targets.sum().item()
|
||||
total_epoch_pred += y_pred.sum().item()
|
||||
|
||||
loss.backward()
|
||||
optimizer.step()
|
||||
|
||||
print(
|
||||
f"Epoch {epoch + 1}/{num_epochs}, Loss: {total_epoch_loss}, Acc: {1 - abs(total_epoch_pred - total_epoch_target) / total_epoch_target}"
|
||||
)
|
||||
|
||||
with torch.no_grad():
|
||||
test_data = (np.array([[2]]) - dataset.min_x) / (dataset.max_x - dataset.min_x)
|
||||
test_data = Variable(
|
||||
torch.tensor(test_data, dtype=torch.float64), requires_grad=False
|
||||
).to(device)
|
||||
predicted = model(test_data).to("cpu")
|
||||
print(
|
||||
f"Model weights: {model.linear.weight.item()}, bias: {model.linear.bias.item()}"
|
||||
)
|
||||
print(f"Prediction for test data: {predicted.item()}")
|
||||
|
||||
139
Lab1/code/3.1.py
139
Lab1/code/3.1.py
@@ -96,73 +96,76 @@ class Model_3_1:
|
||||
return self.params
|
||||
|
||||
|
||||
learning_rate = 5e-1
|
||||
num_epochs = 10
|
||||
batch_size = 4096
|
||||
num_classes = 10
|
||||
device = "cuda:0" if torch.cuda.is_available() else "cpu"
|
||||
if __name__ == "__main__":
|
||||
learning_rate = 5e-1
|
||||
num_epochs = 10
|
||||
batch_size = 4096
|
||||
num_classes = 10
|
||||
device = "cuda:0" if torch.cuda.is_available() else "cpu"
|
||||
|
||||
transform = transforms.Compose(
|
||||
[
|
||||
transforms.ToTensor(),
|
||||
transforms.Normalize((0.5,), (1.0,)),
|
||||
]
|
||||
)
|
||||
train_dataset = datasets.FashionMNIST(
|
||||
root="../dataset", train=True, transform=transform, download=True
|
||||
)
|
||||
test_dataset = datasets.FashionMNIST(
|
||||
root="../dataset", train=False, transform=transform, download=True
|
||||
)
|
||||
train_loader = DataLoader(
|
||||
dataset=train_dataset,
|
||||
batch_size=batch_size,
|
||||
shuffle=True,
|
||||
num_workers=14,
|
||||
pin_memory=True,
|
||||
)
|
||||
test_loader = DataLoader(
|
||||
dataset=test_dataset,
|
||||
batch_size=batch_size,
|
||||
shuffle=True,
|
||||
num_workers=14,
|
||||
pin_memory=True,
|
||||
)
|
||||
|
||||
model = Model_3_1(num_classes).to(device)
|
||||
criterion = My_CrossEntropyLoss()
|
||||
optimizer = My_optimizer(model.parameters(), lr=learning_rate)
|
||||
|
||||
for epoch in range(num_epochs):
|
||||
total_epoch_loss = 0
|
||||
for index, (images, targets) in tqdm(
|
||||
enumerate(train_loader), total=len(train_loader)
|
||||
):
|
||||
optimizer.zero_grad()
|
||||
|
||||
images = images.to(device)
|
||||
targets = targets.to(device).to(dtype=torch.long)
|
||||
|
||||
one_hot_targets = (
|
||||
my_one_hot(targets, num_classes=num_classes).to(device).to(dtype=torch.long)
|
||||
)
|
||||
|
||||
outputs = model(images)
|
||||
loss = criterion(outputs, one_hot_targets)
|
||||
total_epoch_loss += loss
|
||||
|
||||
loss.backward()
|
||||
optimizer.step()
|
||||
|
||||
total_acc = 0
|
||||
with torch.no_grad():
|
||||
for index, (image, targets) in tqdm(
|
||||
enumerate(test_loader), total=len(test_loader)
|
||||
):
|
||||
image = image.to(device)
|
||||
targets = targets.to(device)
|
||||
outputs = model(image)
|
||||
total_acc += (outputs.argmax(1) == targets).sum()
|
||||
print(
|
||||
f"Epoch {epoch + 1}/{num_epochs} Train, Loss: {total_epoch_loss}, Acc: {total_acc / len(test_dataset)}"
|
||||
transform = transforms.Compose(
|
||||
[
|
||||
transforms.ToTensor(),
|
||||
transforms.Normalize((0.5,), (1.0,)),
|
||||
]
|
||||
)
|
||||
train_dataset = datasets.FashionMNIST(
|
||||
root="../dataset", train=True, transform=transform, download=True
|
||||
)
|
||||
test_dataset = datasets.FashionMNIST(
|
||||
root="../dataset", train=False, transform=transform, download=True
|
||||
)
|
||||
train_loader = DataLoader(
|
||||
dataset=train_dataset,
|
||||
batch_size=batch_size,
|
||||
shuffle=True,
|
||||
num_workers=14,
|
||||
pin_memory=True,
|
||||
)
|
||||
test_loader = DataLoader(
|
||||
dataset=test_dataset,
|
||||
batch_size=batch_size,
|
||||
shuffle=True,
|
||||
num_workers=14,
|
||||
pin_memory=True,
|
||||
)
|
||||
|
||||
model = Model_3_1(num_classes).to(device)
|
||||
criterion = My_CrossEntropyLoss()
|
||||
optimizer = My_optimizer(model.parameters(), lr=learning_rate)
|
||||
|
||||
for epoch in range(num_epochs):
|
||||
total_epoch_loss = 0
|
||||
for index, (images, targets) in tqdm(
|
||||
enumerate(train_loader), total=len(train_loader)
|
||||
):
|
||||
optimizer.zero_grad()
|
||||
|
||||
images = images.to(device)
|
||||
targets = targets.to(device).to(dtype=torch.long)
|
||||
|
||||
one_hot_targets = (
|
||||
my_one_hot(targets, num_classes=num_classes)
|
||||
.to(device)
|
||||
.to(dtype=torch.long)
|
||||
)
|
||||
|
||||
outputs = model(images)
|
||||
loss = criterion(outputs, one_hot_targets)
|
||||
total_epoch_loss += loss
|
||||
|
||||
loss.backward()
|
||||
optimizer.step()
|
||||
|
||||
total_acc = 0
|
||||
with torch.no_grad():
|
||||
for index, (image, targets) in tqdm(
|
||||
enumerate(test_loader), total=len(test_loader)
|
||||
):
|
||||
image = image.to(device)
|
||||
targets = targets.to(device)
|
||||
outputs = model(image)
|
||||
total_acc += (outputs.argmax(1) == targets).sum()
|
||||
print(
|
||||
f"Epoch {epoch + 1}/{num_epochs} Train, Loss: {total_epoch_loss}, Acc: {total_acc / len(test_dataset)}"
|
||||
)
|
||||
|
||||
145
Lab1/code/3.2.py
145
Lab1/code/3.2.py
@@ -20,77 +20,78 @@ class Model_3_2(nn.Module):
|
||||
return x
|
||||
|
||||
|
||||
learning_rate = 5e-2
|
||||
num_epochs = 10
|
||||
batch_size = 4096
|
||||
num_classes = 10
|
||||
device = "cuda:0" if torch.cuda.is_available() else "cpu"
|
||||
if __name__ == "__main__":
|
||||
learning_rate = 5e-2
|
||||
num_epochs = 10
|
||||
batch_size = 4096
|
||||
num_classes = 10
|
||||
device = "cuda:0" if torch.cuda.is_available() else "cpu"
|
||||
|
||||
transform = transforms.Compose(
|
||||
[
|
||||
transforms.ToTensor(),
|
||||
transforms.Normalize((0.5,), (1.0,)),
|
||||
]
|
||||
)
|
||||
train_dataset = datasets.FashionMNIST(
|
||||
root="../dataset", train=True, transform=transform, download=True
|
||||
)
|
||||
test_dataset = datasets.FashionMNIST(
|
||||
root="../dataset", train=False, transform=transform, download=True
|
||||
)
|
||||
train_loader = DataLoader(
|
||||
dataset=train_dataset,
|
||||
batch_size=batch_size,
|
||||
shuffle=True,
|
||||
num_workers=14,
|
||||
pin_memory=True,
|
||||
)
|
||||
test_loader = DataLoader(
|
||||
dataset=test_dataset,
|
||||
batch_size=batch_size,
|
||||
shuffle=True,
|
||||
num_workers=14,
|
||||
pin_memory=True,
|
||||
)
|
||||
|
||||
model = Model_3_2(num_classes).to(device)
|
||||
criterion = nn.CrossEntropyLoss()
|
||||
optimizer = torch.optim.SGD(model.parameters(), lr=learning_rate)
|
||||
|
||||
for epoch in range(num_epochs):
|
||||
total_epoch_loss = 0
|
||||
model.train()
|
||||
for index, (images, targets) in tqdm(
|
||||
enumerate(train_loader), total=len(train_loader)
|
||||
):
|
||||
optimizer.zero_grad()
|
||||
|
||||
images = images.to(device)
|
||||
targets = targets.to(device)
|
||||
|
||||
one_hot_targets = (
|
||||
torch.nn.functional.one_hot(targets, num_classes=num_classes)
|
||||
.to(device)
|
||||
.to(dtype=torch.float32)
|
||||
)
|
||||
|
||||
outputs = model(images)
|
||||
loss = criterion(outputs, one_hot_targets)
|
||||
total_epoch_loss += loss
|
||||
|
||||
loss.backward()
|
||||
optimizer.step()
|
||||
|
||||
model.eval()
|
||||
total_acc = 0
|
||||
with torch.no_grad():
|
||||
for index, (image, targets) in tqdm(
|
||||
enumerate(test_loader), total=len(test_loader)
|
||||
):
|
||||
image = image.to(device)
|
||||
targets = targets.to(device)
|
||||
outputs = model(image)
|
||||
total_acc += (outputs.argmax(1) == targets).sum()
|
||||
print(
|
||||
f"Epoch {epoch + 1}/{num_epochs} Train, Loss: {total_epoch_loss}, Acc: {total_acc / len(test_dataset)}"
|
||||
transform = transforms.Compose(
|
||||
[
|
||||
transforms.ToTensor(),
|
||||
transforms.Normalize((0.5,), (1.0,)),
|
||||
]
|
||||
)
|
||||
train_dataset = datasets.FashionMNIST(
|
||||
root="../dataset", train=True, transform=transform, download=True
|
||||
)
|
||||
test_dataset = datasets.FashionMNIST(
|
||||
root="../dataset", train=False, transform=transform, download=True
|
||||
)
|
||||
train_loader = DataLoader(
|
||||
dataset=train_dataset,
|
||||
batch_size=batch_size,
|
||||
shuffle=True,
|
||||
num_workers=14,
|
||||
pin_memory=True,
|
||||
)
|
||||
test_loader = DataLoader(
|
||||
dataset=test_dataset,
|
||||
batch_size=batch_size,
|
||||
shuffle=True,
|
||||
num_workers=14,
|
||||
pin_memory=True,
|
||||
)
|
||||
|
||||
model = Model_3_2(num_classes).to(device)
|
||||
criterion = nn.CrossEntropyLoss()
|
||||
optimizer = torch.optim.SGD(model.parameters(), lr=learning_rate)
|
||||
|
||||
for epoch in range(num_epochs):
|
||||
total_epoch_loss = 0
|
||||
model.train()
|
||||
for index, (images, targets) in tqdm(
|
||||
enumerate(train_loader), total=len(train_loader)
|
||||
):
|
||||
optimizer.zero_grad()
|
||||
|
||||
images = images.to(device)
|
||||
targets = targets.to(device)
|
||||
|
||||
one_hot_targets = (
|
||||
torch.nn.functional.one_hot(targets, num_classes=num_classes)
|
||||
.to(device)
|
||||
.to(dtype=torch.float32)
|
||||
)
|
||||
|
||||
outputs = model(images)
|
||||
loss = criterion(outputs, one_hot_targets)
|
||||
total_epoch_loss += loss
|
||||
|
||||
loss.backward()
|
||||
optimizer.step()
|
||||
|
||||
model.eval()
|
||||
total_acc = 0
|
||||
with torch.no_grad():
|
||||
for index, (image, targets) in tqdm(
|
||||
enumerate(test_loader), total=len(test_loader)
|
||||
):
|
||||
image = image.to(device)
|
||||
targets = targets.to(device)
|
||||
outputs = model(image)
|
||||
total_acc += (outputs.argmax(1) == targets).sum()
|
||||
print(
|
||||
f"Epoch {epoch + 1}/{num_epochs} Train, Loss: {total_epoch_loss}, Acc: {total_acc / len(test_dataset)}"
|
||||
)
|
||||
|
||||
Reference in New Issue
Block a user