first commit
This commit is contained in:
96
Lab1/code/3.2.py
Normal file
96
Lab1/code/3.2.py
Normal file
@@ -0,0 +1,96 @@
|
||||
import numpy as np
|
||||
import torch
|
||||
from torch.utils.data import DataLoader
|
||||
from torch import nn
|
||||
from tqdm import tqdm
|
||||
from torchvision import datasets, transforms
|
||||
from torch.utils.data import DataLoader
|
||||
import ipdb
|
||||
|
||||
|
||||
class Model(nn.Module):
|
||||
def __init__(self, num_classes):
|
||||
super(Model, self).__init__()
|
||||
self.flatten = nn.Flatten()
|
||||
self.linear = nn.Linear(28 * 28, num_classes)
|
||||
|
||||
def forward(self, x: torch.Tensor):
|
||||
x = self.flatten(x)
|
||||
x = self.linear(x)
|
||||
return x
|
||||
|
||||
|
||||
learning_rate = 5e-3
|
||||
num_epochs = 10
|
||||
batch_size = 4096
|
||||
num_classes = 10
|
||||
device = "cuda:0" if torch.cuda.is_available() else "cpu"
|
||||
|
||||
transform = transforms.Compose(
|
||||
[
|
||||
transforms.ToTensor(),
|
||||
transforms.Normalize((0.5,), (0.5,)),
|
||||
]
|
||||
)
|
||||
train_dataset = datasets.FashionMNIST(
|
||||
root="./dataset", train=True, transform=transform, download=True
|
||||
)
|
||||
test_dataset = datasets.FashionMNIST(
|
||||
root="./dataset", train=False, transform=transform, download=True
|
||||
)
|
||||
train_loader = DataLoader(
|
||||
dataset=train_dataset,
|
||||
batch_size=batch_size,
|
||||
shuffle=True,
|
||||
num_workers=4,
|
||||
pin_memory=True,
|
||||
)
|
||||
test_loader = DataLoader(
|
||||
dataset=test_dataset,
|
||||
batch_size=batch_size,
|
||||
shuffle=True,
|
||||
num_workers=4,
|
||||
pin_memory=True,
|
||||
)
|
||||
|
||||
model = Model(num_classes).to(device)
|
||||
criterion = nn.CrossEntropyLoss()
|
||||
optimizer = torch.optim.Adam(model.parameters(), lr=learning_rate)
|
||||
|
||||
for epoch in range(num_epochs):
|
||||
total_epoch_loss = 0
|
||||
model.train()
|
||||
for index, (images, targets) in tqdm(
|
||||
enumerate(train_loader), total=len(train_loader)
|
||||
):
|
||||
optimizer.zero_grad()
|
||||
|
||||
images = images.to(device)
|
||||
targets = targets.to(device)
|
||||
|
||||
one_hot_targets = (
|
||||
torch.nn.functional.one_hot(targets, num_classes=num_classes)
|
||||
.to(device)
|
||||
.to(dtype=torch.float32)
|
||||
)
|
||||
|
||||
outputs = model(images)
|
||||
loss = criterion(outputs, one_hot_targets)
|
||||
total_epoch_loss += loss
|
||||
|
||||
loss.backward()
|
||||
optimizer.step()
|
||||
|
||||
model.eval()
|
||||
total_acc = 0
|
||||
with torch.no_grad():
|
||||
for index, (image, targets) in tqdm(
|
||||
enumerate(test_loader), total=len(test_loader)
|
||||
):
|
||||
image = image.to(device)
|
||||
targets = targets.to(device)
|
||||
outputs = model(image)
|
||||
total_acc += (outputs.argmax(1) == targets).sum()
|
||||
print(
|
||||
f"Epoch {epoch + 1}/{num_epochs} Train, Loss: {total_epoch_loss}, Acc: {total_acc / len(test_dataset)}"
|
||||
)
|
||||
Reference in New Issue
Block a user