first commit

This commit is contained in:
2023-10-10 09:42:31 +08:00
commit 175bf7b7da
12 changed files with 3102 additions and 0 deletions

169
Lab1/code/3.1.py Normal file
View File

@@ -0,0 +1,169 @@
import numpy as np
import torch
from torch.utils.data import Dataset, DataLoader
from torch import nn
from tqdm import tqdm
from torchvision import datasets, transforms
from torch.utils.data import DataLoader
def my_one_hot(indices: torch.Tensor, num_classes: int):
one_hot_tensor = torch.zeros(len(indices), num_classes).to(indices.device)
one_hot_tensor.scatter_(1, indices.view(-1, 1), 1)
return one_hot_tensor
class My_CrossEntropyLoss:
def __call__(self, predictions: torch.Tensor, targets: torch.Tensor):
max_values = torch.max(predictions, dim=1, keepdim=True).values
exp_values = torch.exp(predictions - max_values)
softmax_output = exp_values / torch.sum(exp_values, dim=1, keepdim=True)
log_probs = torch.log(softmax_output)
nll_loss = -torch.sum(targets * log_probs, dim=1)
average_loss = torch.mean(nll_loss)
return average_loss
class My_optimizer:
def __init__(self, params: list[torch.Tensor], lr: float):
self.params = params
self.lr = lr
def step(self):
for param in self.params:
param.data = param.data - self.lr * param.grad.data
def zero_grad(self):
for param in self.params:
if param.grad is not None:
param.grad.data.zero_()
class My_Linear:
def __init__(self, input_feature: int, output_feature: int):
self.weight = torch.randn(
(output_feature, input_feature), requires_grad=True, dtype=torch.float32
)
self.bias = torch.randn(1, requires_grad=True, dtype=torch.float32)
self.params = [self.weight, self.bias]
def __call__(self, x: torch.Tensor):
return self.forward(x)
def forward(self, x: torch.Tensor):
x = torch.matmul(x, self.weight.T) + self.bias
return x
def to(self, device: str):
for param in self.params:
param.data = param.data.to(device=device)
return self
def parameters(self):
return self.params
class My_Flatten:
def __call__(self, x: torch.Tensor):
return self.forward(x)
def forward(self, x: torch.Tensor):
x = x.view(x.shape[0], -1)
return x
class Model_3_1:
def __init__(self, num_classes):
self.flatten = My_Flatten()
self.linear = My_Linear(28 * 28, num_classes)
self.params = self.linear.params
def __call__(self, x: torch.Tensor):
return self.forward(x)
def forward(self, x: torch.Tensor):
x = self.flatten(x)
x = self.linear(x)
return x
def to(self, device: str):
for param in self.params:
param.data = param.data.to(device=device)
return self
def parameters(self):
return self.params
learning_rate = 5e-3
num_epochs = 10
batch_size = 4096
num_classes = 10
device = "cuda:0" if torch.cuda.is_available() else "cpu"
transform = transforms.Compose(
[
transforms.ToTensor(),
transforms.Normalize((0.5,), (0.5,)),
]
)
train_dataset = datasets.FashionMNIST(
root="./dataset", train=True, transform=transform, download=True
)
test_dataset = datasets.FashionMNIST(
root="./dataset", train=False, transform=transform, download=True
)
train_loader = DataLoader(
dataset=train_dataset,
batch_size=batch_size,
shuffle=True,
num_workers=4,
pin_memory=True,
)
test_loader = DataLoader(
dataset=test_dataset,
batch_size=batch_size,
shuffle=True,
num_workers=4,
pin_memory=True,
)
model = Model_3_1(num_classes).to(device)
criterion = My_CrossEntropyLoss()
optimizer = My_optimizer(model.parameters(), lr=learning_rate)
for epoch in range(num_epochs):
total_epoch_loss = 0
for index, (images, targets) in tqdm(
enumerate(train_loader), total=len(train_loader)
):
optimizer.zero_grad()
images = images.to(device)
targets = targets.to(device).to(dtype=torch.long)
one_hot_targets = (
my_one_hot(targets, num_classes=num_classes).to(device).to(dtype=torch.long)
)
outputs = model(images)
# ipdb.set_trace()
loss = criterion(outputs, one_hot_targets)
total_epoch_loss += loss
loss.backward()
optimizer.step()
total_acc = 0
with torch.no_grad():
for index, (image, targets) in tqdm(
enumerate(test_loader), total=len(test_loader)
):
image = image.to(device)
targets = targets.to(device)
outputs = model(image)
total_acc += (outputs.argmax(1) == targets).sum()
print(
f"Epoch {epoch + 1}/{num_epochs} Train, Loss: {total_epoch_loss}, Acc: {total_acc / len(test_dataset)}"
)