first commit
This commit is contained in:
89
Lab1/code/2.2.py
Normal file
89
Lab1/code/2.2.py
Normal file
@@ -0,0 +1,89 @@
|
||||
import numpy as np
|
||||
import torch
|
||||
from torch.autograd import Variable
|
||||
from torch.utils.data import Dataset, DataLoader
|
||||
from torch import nn
|
||||
from tqdm import tqdm
|
||||
import ipdb
|
||||
|
||||
|
||||
class Model(nn.Module):
|
||||
def __init__(self):
|
||||
super(Model, self).__init__()
|
||||
self.linear = nn.Linear(1, 1, dtype=torch.float64)
|
||||
|
||||
def forward(self, x):
|
||||
x = self.linear(x)
|
||||
x = torch.sigmoid(x)
|
||||
return x
|
||||
|
||||
|
||||
class My_Dataset(Dataset):
|
||||
def __init__(self, data_size=1000000):
|
||||
np.random.seed(0)
|
||||
x = 2 * np.random.rand(data_size, 1)
|
||||
noise = 0.2 * np.random.randn(data_size, 1)
|
||||
y = 4 - 3 * x + noise
|
||||
self.min_x, self.max_x = np.min(x), np.max(x)
|
||||
min_y, max_y = np.min(y), np.max(y)
|
||||
x = (x - self.min_x) / (self.max_x - self.min_x)
|
||||
y = (y - min_y) / (max_y - min_y)
|
||||
self.data = [[x[i][0], y[i][0]] for i in range(x.shape[0])]
|
||||
|
||||
def __len__(self):
|
||||
return len(self.data)
|
||||
|
||||
def __getitem__(self, index):
|
||||
x, y = self.data[index]
|
||||
return x, y
|
||||
|
||||
|
||||
learning_rate = 1e-2
|
||||
num_epochs = 10
|
||||
batch_size = 1024
|
||||
device = "cuda:0" if torch.cuda.is_available() else "cpu"
|
||||
|
||||
dataset = My_Dataset()
|
||||
dataloader = DataLoader(
|
||||
dataset=dataset, batch_size=batch_size, shuffle=True, num_workers=5, pin_memory=True
|
||||
)
|
||||
|
||||
model = Model().to(device)
|
||||
criterion = nn.BCELoss()
|
||||
optimizer = torch.optim.Adam(model.parameters(), lr=learning_rate)
|
||||
|
||||
for epoch in range(num_epochs):
|
||||
total_epoch_loss = 0
|
||||
total_epoch_pred = 0
|
||||
total_epoch_target = 0
|
||||
for index, (x, targets) in tqdm(enumerate(dataloader), total=len(dataloader)):
|
||||
optimizer.zero_grad()
|
||||
|
||||
x = x.to(device)
|
||||
targets = targets.to(device)
|
||||
|
||||
x = x.unsqueeze(1)
|
||||
targets = targets.unsqueeze(1)
|
||||
y_pred = model(x)
|
||||
loss = criterion(y_pred, targets)
|
||||
total_epoch_loss += loss.item()
|
||||
total_epoch_target += targets.sum().item()
|
||||
total_epoch_pred += y_pred.sum().item()
|
||||
|
||||
loss.backward()
|
||||
optimizer.step()
|
||||
|
||||
print(
|
||||
f"Epoch {epoch + 1}/{num_epochs}, Loss: {total_epoch_loss}, Acc: {1 - abs(total_epoch_pred - total_epoch_target) / total_epoch_target}"
|
||||
)
|
||||
|
||||
with torch.no_grad():
|
||||
test_data = (np.array([[2]]) - dataset.min_x) / (dataset.max_x - dataset.min_x)
|
||||
test_data = Variable(
|
||||
torch.tensor(test_data, dtype=torch.float64), requires_grad=False
|
||||
).to(device)
|
||||
predicted = model(test_data).to("cpu")
|
||||
print(
|
||||
f"Model weights: {model.linear.weight.item()}, bias: {model.linear.bias.item()}"
|
||||
)
|
||||
print(f"Prediction for test data: {predicted.item()}")
|
||||
Reference in New Issue
Block a user